
Document Number: MD00103
Revision 2.02

January 5, 2004

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software
User’s Manual

Copyright © 2000-2003 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any
copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing
by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format)
is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE
DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION
OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design
or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information,
or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise,
including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the
furnishing of this document does not give recipient any license to any intellectual property rights, including any patent
rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or
indirectly, in violation of the law of any country or international law, regulation, treaty, Executive Order, statute,
amendments or supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the
information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS16, QuickMIPS, R3000 and R5000 are among the registered trademarks of MIPS Technologies, Inc. in the
United States and other countries, and MIPS16e, MIPS32, MIPS64, MIPS-3D, MIPS-Based, MIPS I, MIPS II, MIPS
III, MIPS IV, MIPS V, MIPS RISC Certified Power logo, MIPSsim, MIPS Technologies logo, R4000, 4K, 4Kc, 4Km,
4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kf, 24Kc, 25Kf, ASMACRO,
ATLAS, At the Core of the User Experience., BusBridge, CorExtend, CoreFPGA, CoreLV, EC, FastMIPS, JALGO,
MALTA, MDMX, MGB, PDtrace, The Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it and YAMON are
among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Template: B1.10, Built with tags: 2B EMERALD MIPS32 PROC

Table of Contents

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family ..1
1.1 The 4KEc™, 4KEm™, and 4KEp™ Cores ..1
1.2 Features ...2
1.3 4KE™ Core Block Diagram ...4

1.3.1 Required Logic Blocks ...5
1.3.2 Optional Logic Blocks ..8

Chapter 2 Pipeline of the 4KE™ Core ..13
2.1 Pipeline Stages ..13

2.1.1 I Stage: Instruction Fetch ..15
2.1.2 E Stage: Execution ..15
2.1.3 M Stage: Memory Fetch ...15
2.1.4 A Stage: Align ...15
2.1.5 W Stage: Writeback ..16

2.2 Instruction Cache Miss ..16
2.3 Data Cache Miss ...16
2.4 Multiply/Divide Operations ..17
2.5 MDU Pipeline (4KEc™ and 4KEm™ Cores) ..17

2.5.1 32x16 Multiply (4KEc™ & 4KEm™ Cores) ...20
2.5.2 32x32 Multiply (4KEc ™ & 4KEm™ Cores) ...20
2.5.3 Divide (4KEc™ & 4KEm™ Cores) ...21

2.6 MDU Pipeline (4KEp™ Core) ..22
2.6.1 Multiply (4KEp™ Core) ...23
2.6.2 Multiply Accumulate (4KEp™ Core) ..23
2.6.3 Divide (4KEp™ Core) ..23

2.7 Branch Delay ...24
2.8 Data Bypassing ...24

2.8.1 Load Delay ..25
2.8.2 Move from HI/LO and CP0 Delay ..26

2.9 Coprocessor 2 instructions ..26
2.10 Interlock Handling ..27
2.11 Slip Conditions ..28
2.12 Instruction Interlocks ..29
2.13 Hazards ..30

2.13.1 Types of Hazards ..30
2.13.2 Instruction Listing ...32
2.13.3 Eliminating Hazards ..33

Chapter 3 Memory Management of the 4KE™ Core ...34
3.1 Introduction ...34
3.2 Modes of Operation ..35

3.2.1 Virtual Memory Segments ..36
3.2.2 User Mode ...38
3.2.3 Kernel Mode ...39
3.2.4 Debug Mode ..41

3.3 Translation Lookaside Buffer (4KEc™ Core Only) ...43
3.3.1 Joint TLB ..43
3.3.2 Instruction TLB ...46
3.3.3 Data TLB ..46

3.4 Virtual-to-Physical Address Translation (4KEc™ Core) ...46
3.4.1 Hits, Misses, and Multiple Matches ..48
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 i

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

6
7

1

95

.
00

0

3.4.2 Memory Space ..49
3.4.3 TLB Instructions ...50

3.5 Fixed Mapping MMU (4KEm™ & 4KEp™ Cores) ..51
3.6 System Control Coprocessor ...53

Chapter 4 Exceptions and Interrupts in the 4KE™ Core ..54
4.1 Exception Conditions ..54
4.2 Exception Priority ...55
4.3 Interrupts ...56

4.3.1 Interrupt Modes ...56
4.3.2 Generation of Exception Vector Offsets for Vectored Interrupts ...64

4.4 GPR Shadow Registers ...65
4.5 Exception Vector Locations ..66
4.6 General Exception Processing ..67
4.7 Debug Exception Processing ..69
4.8 Exceptions ...70

4.8.1 Reset Exception ..70
4.8.2 Soft Reset Exception ...71
4.8.3 Debug Single Step Exception ...72
4.8.4 Debug Interrupt Exception ..73
4.8.5 Non-Maskable Interrupt (NMI) Exception ...73
4.8.6 Machine Check Exception (4KEc™ core) ...74
4.8.7 Interrupt Exception ...74
4.8.8 Debug Instruction Break Exception ..74
4.8.9 Watch Exception — Instruction Fetch or Data Access ..75
4.8.10 Address Error Exception — Instruction Fetch/Data Access ...75
4.8.11 TLB Refill Exception — Instruction Fetch or Data Access (4KEc™ core only)7
4.8.12 TLB Invalid Exception — Instruction Fetch or Data Access (4KEc™ core only)7
4.8.13 Bus Error Exception — Instruction Fetch or Data Access ...77
4.8.14 Debug Software Breakpoint Exception ..78
4.8.15 Execution Exception — System Call ..78
4.8.16 Execution Exception — Breakpoint ...78
4.8.17 Execution Exception — Reserved Instruction ..78
4.8.18 Execution Exception — Coprocessor Unusable ...79
4.8.19 Execution Exception — Coprocessor 2 Exception ...79
4.8.20 Execution Exception — Implementation-Specific 1 exception ..79
4.8.21 Execution Exception — Implementation Specific 2 exception ..80
4.8.22 Execution Exception — Integer Overflow ...80
4.8.23 Execution Exception — Trap ..80
4.8.24 Debug Data Break Exception ..81
4.8.25 TLB Modified Exception — Data Access (4KEc™ core only) ...8

4.9 Exception Handling and Servicing Flowcharts ...82

Chapter 5 CP0 Registers of the 4KE™ Core ..89
5.1 CP0 Register Summary ...90
5.2 CP0 Register Descriptions ..92

5.2.1Index Register (CP0 Register 0, Select 0) ...93
5.2.2Random Register (CP0 Register 1, Select 0) ..94
5.2.3EntryLo0 andEntryLo1 Registers (CP0 Registers 2 and 3, Select 0) ...
5.2.4Context Register (CP0 Register 4, Select 0) ...97
5.2.5PageMask Register (CP0 Register 5, Select 0) ..98
5.2.6PageGrain Register (CP0 Register 5, Select 1) ..1
5.2.7Wired Register (CP0 Register 6, Select 0) ..101
5.2.8HWREna Register (CP0 Register 7, Select 0) ..102
5.2.9BadVAddr Register (CP0 Register 8, Select 0) ...13
5.2.10Count Register (CP0 Register 9, Select 0) ..104
ii MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

06

1

33
34

39
42
44
45
.146
5.2.11EntryHi Register (CP0 Register 10, Select 0) ...105
5.2.12Compare Register (CP0 Register 11, Select 0) ...1
5.2.13Status Register (CP0 Register 12, Select 0) ..107
5.2.14IntCtl Register (CP0 Register 12, Select 1) ..112
5.2.15SRSCtl Register (CP0 Register 12, Select 2) ..114
5.2.16SRSMap Register (CP0 Register 12, Select 3) ..17
5.2.17Cause Register (CP0 Register 13, Select 0) ..118
5.2.18 Exception Program Counter (CP0 Register 14, Select 0) ...122
5.2.19 Processor Identification (CP0 Register 15, Select 0) ..123
5.2.20EBase Register (CP0 Register 15, Select 1) ...124
5.2.21Config Register (CP0 Register 16, Select 0) ...125
5.2.22Config1 Register (CP0 Register 16, Select 1) ...127
5.2.23Config2 Register (CP0 Register 16, Select 2) ...129
5.2.24Config3 Register (CP0 Register 16, Select 3) ...130
5.2.25 Load Linked Address (CP0 Register 17, Select 0) ...132
5.2.26WatchLo Register (CP0 Register 18, Select 0-7) ..1
5.2.27WatchHi Register (CP0 Register 19, Select 0-7) ..1
5.2.28Debug Register (CP0 Register 23, Select 0) ...136
5.2.29Trace Control Register (CP0 Register 23, Select 1) ...1
5.2.30Trace Control2 Register (CP0 Register 23, Select 2) ...1
5.2.31User Trace Data Register (CP0 Register 23, Select 3) ..1
5.2.32TraceBPC Register (CP0 Register 23, Select 4) ...1
5.2.33 Debug Exception Program Counter Register (CP0 Register 24, Select 0) ..
5.2.34ErrCtl Register (CP0 Register 26, Select 0) ...147
5.2.35TagLo Register (CP0 Register 28, Select 0) ...148
5.2.36DataLo Register (CP0 Register 28, Select 1) ...149
5.2.37ErrorEPC (CP0 Register 30, Select 0) ...150
5.2.38DeSave Register (CP0 Register 31, Select 0) ...151

Chapter 6 Hardware and Software Initialization of the 4KE™ Core ..153
6.1 Hardware-Initialized Processor State ..153

6.1.1 Coprocessor 0 State ...153
6.1.2 TLB Initialization (4KEc™ core only) ...154
6.1.3 Bus State Machines ...154
6.1.4 Static Configuration Inputs ...154
6.1.5 Fetch Address ..154

6.2 Software Initialized Processor State ...154
6.2.1 Register File ..154
6.2.2 TLB (4KEc™ Core Only) ..154
6.2.3 Caches ...155
6.2.4 Coprocessor 0 State ...155

Chapter 7 Caches of the 4KE™ Core ...158
7.1 Cache Configurations ..158
7.2 Cache Protocols ...160

7.2.1 Cache Organization ...160
7.2.2 Cacheability Attributes ...161
7.2.3 Replacement Policy ..161
7.2.4 Virtual Aliasing ...162

7.3 Instruction Cache ..163
7.4 Data Cache ..163
7.5 CACHE Instruction ...164
7.6 Software Cache Testing ..165

7.6.1 I-Cache/D-cache Tag Arrays ..165
7.6.2 I-Cache Data Array ...165
7.6.3 I-Cache WS Array ...165
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 iii

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.6.4 D-Cache Data Array ...165
7.6.5 D-cache WS Array ..165

7.7 Memory Coherence Issues ..166

Chapter 8 Power Management of the 4KE™ Core ...168
8.1 Register-Controlled Power Management ..168
8.2 Instruction-Controlled Power Management ..169

Chapter 9 EJTAG Debug Support in the 4KE™ Core ..171
9.1 Debug Control Register ..172
9.2 Hardware Breakpoints ...174

9.2.1 Features of Instruction Breakpoint ..174
9.2.2 Features of Data Breakpoint ...174
9.2.3 Instruction Breakpoint Registers Overview ..174
9.2.4 Data Breakpoint Registers Overview ..175
9.2.5 Conditions for Matching Breakpoints ...175
9.2.6 Debug Exceptions from Breakpoints ..177
9.2.7 Breakpoint used as TriggerPoint ...178
9.2.8 Instruction Breakpoint Registers ...178
9.2.9 Data Breakpoint Registers ..185

9.3 Test Access Port (TAP) ...193
9.3.1 EJTAG Internal and External Interfaces ...193
9.3.2 Test Access Port Operation ...194
9.3.3 Test Access Port (TAP) Instructions ...197

9.4 EJTAG TAP Registers ..200
9.4.1 Instruction Register ...200
9.4.2 Data Registers Overview ..200
9.4.3 Processor Access Address Register ..206
9.4.4 Fastdata Register (TAP Instruction FASTDATA) ...207

9.5 TAP Processor Accesses ...209
9.6 Fetch/Load and Store from/to the EJTAG Probe through dmseg ...209
9.7 EJTAG Trace ..210

9.7.1 Processor Modes ...211
9.7.2 Software versus Hardware control ..211
9.7.3 Trace information ..211
9.7.4 Load/Store address and data trace information ...212
9.7.5 Programmable processor trace mode options ...213
9.7.6 Programmable trace information options ..213
9.7.7 Enable trace to probe/on-chip memory ...213
9.7.8 TCB Trigger ..214
9.7.9 Cycle by cycle information ...214
9.7.10 Trace Message Format ..214
9.7.11 Trace Word Format ...214

9.8 PDtrace™ Registers (software control) ..214
9.9 Trace Control Block (TCB) Registers (hardware control) ..215

9.9.1TCBCONTROLA Register ..215
9.9.2TCBCONTROLB Register ..218
9.9.3TCBDATA Register ...222
9.9.4TCBCONFIG Register (Reg 0) ...223
9.9.5TCBTW Register (Reg 4) ..224
9.9.6TCBRDP Register (Reg 5) ..225
9.9.7TCBWRP Register (Reg 6) ..225
9.9.8TCBSTP Register (Reg 7) ...225
9.9.9TCBTRIGx Register (Reg 16-23) ..226
9.9.10 Register Reset State ..228

9.10 EJTAG Trace Enabling ...229
iv MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

29
9.10.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints ..2
9.10.2 Turning On PDtrace™ Trace ..229
9.10.3 Turning Off PDtrace™ Trace ..230
9.10.4 TCB Trace Enabling ...231
9.10.5 Tracing a reset exception ..231

9.11 TCB Trigger logic ...231
9.11.1 Trigger units overview ..231
9.11.2 Trigger Source Unit ..232
9.11.3 Trigger Control Units ..233
9.11.4 Trigger Action Unit ...233
9.11.5 Simultaneous triggers ..233

9.12 EJTAG Trace cycle-by-cycle behavior ...234
9.12.1 Fifo logic in PDtrace and TCB modules ...234
9.12.2 Handling of Fifo overflow in the PDtrace module ...234
9.12.3 Handling of Fifo overflow in the TCB ...235
9.12.4 Adding cycle accurate information to the trace ..236

9.13 TCB On-Chip Trace Memory ...236
9.13.1 On-Chip Trace Memory size ..236
9.13.2 Trace-From Mode ...236
9.13.3 Trace-To Mode ...236

Chapter 10 Instruction Set Overview ..237
10.1 CPU Instruction Formats ..237
10.2 Load and Store Instructions ..238

10.2.1 Scheduling a Load Delay Slot ...238
10.2.2 Defining Access Types ...238

10.3 Computational Instructions ...239
10.3.1 Cycle Timing for Multiply and Divide Instructions ...240

10.4 Jump and Branch Instructions ...240
10.4.1 Overview of Jump Instructions ...240
10.4.2 Overview of Branch Instructions ..240

10.5 Control Instructions ...240
10.6 Coprocessor Instructions ...240
10.7 Enhancements to the MIPS Architecture ..241

10.7.1 CLO - Count Leading Ones ..241
10.7.2 CLZ - Count Leading Zeros ..241
10.7.3 MADD - Multiply and Add Word ..241
10.7.4 MADDU - Multiply and Add Unsigned Word ...241
10.7.5 MSUB - Multiply and Subtract Word ...241
10.7.6 MSUBU - Multiply and Subtract Unsigned Word ...242
10.7.7 MUL - Multiply Word ..242
10.7.8 SSNOP- Superscalar Inhibit NOP ..242

Chapter 11 4KE™ Processor Core Instructions ..245
11.1 Understanding the Instruction Descriptions ..245
11.2 4KE™ Opcode Map ..245
11.3 MIPS32™ Instruction Set for the 4KE™ core ...248

Chapter 12 MIPS16 Application-Specific Extension to the MIPS32 Instruction Set ...284
12.1 Instruction Bit Encoding ...284
12.2 Instruction Listing ...286

Appendix A Revision History ...291
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 v

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

..19

.......35

.....52

.....53

...9
List of Figures

Figure 1-1: 4KE™ Processor Core Block Diagram ...5
Figure 1-2: Address Translation During a Cache Access ..7
Figure 2-1: 4KE™ Core Pipeline Stages..14
Figure 2-2: 4KEm™ Core Pipeline Stages...14
Figure 2-3: 4KEp™ Core Pipeline Stages..14
Figure 2-4: Instruction Cache Miss Timing ...16
Figure 2-5: Load/Store Cache Miss Timing...17
Figure 2-6: MDU Pipeline Behavior During Multiply Operations (4KEc™ & 4KEm™ Processors)
Figure 2-7: MDU Pipeline Flow During a 32x16 Multiply Operation ..20
Figure 2-8: MDU Pipeline Flow During a 32x32 Multiply Operation ..20
Figure 2-9: MDU Pipeline Flow During a 8-bit Divide (DIV) Operation ...21
Figure 2-10: MDU Pipeline Flow During a 16-bit Divide (DIV) Operation ...21
Figure 2-11: MDU Pipeline Flow During a 24-bit Divide (DIV) Operation ...21
Figure 2-12: MDU Pipeline Flow During a 32-bit Divide (DIV) Operation ...22
Figure 2-13: 4KEp™ MDU Pipeline Flow During a Multiply Operation ...23
Figure 2-14: 4KEpC MDU Pipeline Flow During a Multiply Accumulate Operation ..23
Figure 2-15: 4KEp™ MDU Pipeline Flow During a Divide (DIV) Operation..24
Figure 2-16: IU Pipeline Branch Delay..24
Figure 2-17: IU Pipeline Data bypass ..25
Figure 2-18: IU Pipeline M to E bypass...25
Figure 2-19: IU Pipeline A to E Data bypass ...26
Figure 2-20: IU Pipeline Slip after a MFHI ...26
Figure 2-21: Coprocessor 2 Interface Transactions..27
Figure 2-22: Instruction Cache Miss Slip...29
Figure 3-1: Address Translation During a Cache Access in the 4KEc™ core...35
Figure 3-2: Address Translation During a Cache Access in the 4KEm™ and 4KEp™ Cores...................................
Figure 3-3: 4KE™ processor core Virtual Memory Map. ...37
Figure 3-4: User Mode Virtual Address Space ..38
Figure 3-5: Kernel Mode Virtual Address Space ...40
Figure 3-6: Debug Mode Virtual Address Space ...42
Figure 3-7: JTLB Entry (Tag and Data) ...44
Figure 3-8: Overview of a Virtual-to-Physical Address Translation in the 4KEc™ Core...47
Figure 3-9: 32-bit Virtual Address Translation ..48
Figure 3-10: TLB Address Translation Flow in the 4KE™ Processor Core..50
Figure 3-11: FM Memory Map (ERL=0) in the 4KEm™ and 4KEp™ Processor Cores...
Figure 3-12: FM Memory Map (ERL=1) in the 4KEm™ and 4KEp™ Processor Cores...
Figure 4-1: Interrupt Generation for Vectored Interrupt Mode..60
Figure 4-2: Interrupt Generation for External Interrupt Controller Interrupt Mode...63
Figure 4-3: General Exception Handler (HW) ...83
Figure 4-4: General Exception Servicing Guidelines (SW) ...84
Figure 4-5: TLB Miss Exception Handler (HW) — 4KEc™ Core..85
Figure 4-6: TLB Exception Servicing Guidelines (SW) — 4KEc™ Core ..86
Figure 4-7: Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines..87
Figure 5-1:Index Register Format ...93
Figure 5-2:Random Register Format ...94
Figure 5-3:EntryLo0, EntryLo1 Register Format ...5
Figure 5-4:Context Register Format..97
Figure 5-5:PageMask Register Format ...98
Figure 5-6:PageGrain Register Format...100
Figure 5-7: Wired and Random Entries in the TLB ...101
vi MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

..

..199
207
Figure 5-8:Wired Register Format...101
Figure 5-9: HWREna Register Format...102
Figure 5-10:BadVAddr Register Format ...103
Figure 5-11:Count Register Format...104
Figure 5-12:EntryHi Register Format ...105
Figure 5-13:Compare Register Format ...106
Figure 5-14: Status Register Format...107
Figure 5-15: IntCtl Register Format ...112
Figure 5-16: SRSCtl Register Format ..114
Figure 5-17: SRSMap Register Format..117
Figure 5-18: Cause Register Format...118
Figure 5-19:EPC Register Format...122
Figure 5-20:PRIdRegister Format ..123
Figure 5-21: EBase Register Format ..124
Figure 5-22:Config Register Format — Select 0...125
Figure 5-23:Config Register Field Descriptions ...125
Figure 5-24:Config1 Register Format — Select 1...127
Figure 5-25:Config2 Register Format — Select 2...129
Figure 5-26: Config3 Register Format ...130
Figure 5-27:LLAddr Register Format..132
Figure 5-28:WatchLo Register Format..133
Figure 5-29:WatchHi Register Format ..134
Figure 5-30:Debug Register Format..136
Figure 5-31:Trace Control Register Format..139
Figure 5-32:Trace Control2 Register Format..142
Figure 5-33:User Trace Data Register Format ...144
Figure 5-34:Trace BPC Register Format ..145
Figure 5-35:DEPC Register Format..146
Figure 5-36:ErrCtl Register Format..147
Figure 5-37:TagLo Register Format ..148
Figure 5-38:DataLo Register Format ..149
Figure 5-39:ErrorEPC Register Format..150
Figure 5-40:DeSave Register Format ..151
Figure 7-1: Cache Array Formats..160
Figure 9-1: TAP Controller State Diagram ..195
Figure 9-2: Concatenation of the EJTAG Address, Data and Control Registers ...199
Figure 9-3: TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected
Figure 9-4: Endian Formats for thePADRegister ...
Figure 9-5: EJTAG Trace modules in the 4KE™ core ..211
Figure 9-6: TCB Trigger processing overview ..232
Figure 10-1: Instruction Formats..238
Figure 11-1: Usage of Address Fields to Select Index and Way..256
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 vii

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

.........

...95

8

List of Tables

Table 2-1: 4KEc™ and 4KEm™ Core MDU Instruction Latencies..18
Table 2-2: 4KEc™ and 4KEm™ Core MDU Instruction Repeat Rates ..19
Table 2-3: 4KEp™ Core Instruction Latencies..22
Table 2-4: Pipeline Interlocks ...28
Table 2-5: Instruction Interlocks ..29
Table 2-6: Execution Hazards ..31
Table 2-7: Instruction Hazards ...32
Table 2-8: Hazard Instruction Listing ..32
Table 3-1: User Mode Segments ..39
Table 3-2: Kernel Mode Segments...40
Table 3-3: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces42
Table 3-4: CPU Access to drseg Address Range ..42
Table 3-5: CPU Access to dmseg Address Range ...43
Table 3-6: TLB Tag Entry Fields ..44
Table 3-7: TLB Data Entry Fields ...45
Table 3-8: TLB Instructions ...50
Table 3-9: Cache Coherency Attributes ..51
Table 3-10: Cacheability of Segments with Block Address Translation ..51
Table 4-1: Priority of Exceptions ..55
Table 4-2: Interrupt Modes...57
Table 4-3: Relative Interrupt Priority for Vectored Interrupt Mode ..60
Table 4-4: Exception Vector Offsets for Vectored Interrupts ..64
Table 4-5: Exception Vector Base Addresses ..66
Table 4-6: Exception Vector Offsets ..67
Table 4-7: Exception Vectors...67
Table 4-8: Value Stored in EPC, ErrorEPC, or DEPC on an Exception..68
Table 4-9: Debug Exception Vector Addresses ...70
Table 4-10: Register States an Interrupt Exception..74
Table 4-11: Register States on a Watch Exception ..75
Table 4-12: CP0 Register States on an Address Exception Error ..76
Table 4-13: CP0 Register States on a TLB Refill Exception ...76
Table 4-14: CP0 Register States on a TLB Invalid Exception...77
Table 4-15: Register States on a Coprocessor Unusable Exception...79
Table 4-16: Register States on a TLB Modified Exception ...81
Table 5-1: CP0 Registers ...90
Table 5-2: CP0 Register Field Types ...92
Table 5-3: Index Register Field Descriptions...93
Table 5-4:Random Register Field Descriptions ..94
Table 5-5:EntryLo0, EntryLo1 Register Field Descriptions ..
Table 5-6: Cache Coherency Attributes ...96
Table 5-7:Context Register Field Descriptions ...97
Table 5-8:PageMask Register Field Descriptions...98
Table 5-9: Values for the Mask and MaskX1 Fields of thePageMask Register..9
Table 5-10:PageGrain Register Field Descriptions ..100
Table 5-11: Wired Register Field Descriptions..101
Table 5-12: HWREna Register Field Descriptions ..102
Table 5-13:BadVAddr Register Field Description ..103
Table 5-14:Count Register Field Description..104
Table 5-15:EntryHi Register Field Descriptions...105
Table 5-16:Compare Register Field Description ..106
viii MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

115

.

.

172
Table 5-17: Status Register Field Descriptions ..107
Table 5-18: IntCtl Register Field Descriptions ..112
Table 5-19: SRSCtl Register Field Descriptions..114
Table 5-20: Sources for new SRSCtlCSS on an Exception or Interrupt..
Table 5-21: SRSMap Register Field Descriptions ...117
Table 5-22: Cause Register Field Descriptions ..118
Table 5-23: Cause Register ExcCode Field..121
Table 5-24:EPC Register Field Description..122
Table 5-25:PRId Register Field Descriptions..123
Table 5-26: EBase Register Field Descriptions..124
Table 5-27: Cache Coherency Attributes ...126
Table 5-28:Config1 Register Field Descriptions — Select 1 ..127
Table 5-29:Config1 Register Field Descriptions — Select 1 ..129
Table 5-30: Config3 Register Field Descriptions...130
Table 5-31:LLAddr Register Field Descriptions ...132
Table 5-32:WatchLo Register Field Descriptions ...133
Table 5-33:WatchHi Register Field Descriptions ...134
Table 5-34:Debug Register Field Descriptions ..136
Table 5-35: TraceControl Register Field Descriptions ..139
Table 5-36: TraceControl2 Register Field Descriptions ..142
Table 5-37: UserTraceData Register Field Descriptions..144
Table 5-38: TraceBPC Register Field Descriptions ...145
Table 5-39:DEPC Register Formats..146
Table 5-40:ErrCtl Register Field Descriptions ...147
Table 5-41:TagLo Register Field Descriptions ...148
Table 5-42:DataLo Register Field Description ...149
Table 5-43:ErrorEPC Register Field Description...150
Table 5-44:DeSave Register Field Description ...151
Table 7-1: Instruction and Data Cache Attributes ...158
Table 7-2: Instruction and Data Cache Sizes ..159
Table 7-3: LRU and Dirty Width in Way-Select Array ...160
Table 7-4: Potential Virtual Aliasing Bits ..163
Table 7-5: Way Selection Encoding, 4 Ways ..164
Table 7-6: Way Selection Encoding, 3 Ways ..164
Table 7-7: Way Selection Encoding, 2 Ways ..165
Table 9-1:Debug Control Register Field Descriptions ...
Table 9-2: Overview of Status Register for Instruction Breakpoints ..174
Table 9-3: Overview of Registers for Each Instruction Breakpoint ..175
Table 9-4: Overview of Status Register for Data Breakpoints...175
Table 9-5: Overview of Registers for each Data Breakpoint ...175
Table 9-6: Addresses for Instruction Breakpoint Registers ...178
Table 9-7:IBS Register Field Descriptions ..180
Table 9-8:IBAn Register Field Descriptions..181
Table 9-9:IBMn Register Field Descriptions...182
Table 9-10:IBASIDn Register Field Descriptions ...183
Table 9-11:IBCn Register Field Descriptions ...184
Table 9-12: Addresses for Data Breakpoint Registers ...185
Table 9-13:DBS Register Field Descriptions ..186
Table 9-14:DBAn Register Field Descriptions ..187
Table 9-15:DBMn Register Field Descriptions ...188
Table 9-16:DBASIDn Register Field Descriptions..189
Table 9-17:DBCn Register Field Descriptions ...190
Table 9-18:DBVn Register Field Descriptions ..192
Table 9-19: EJTAG Interface Pins ..193
Table 9-20: Implemented EJTAG Instructions ...197
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 ix

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

.

..

15
.216
.218

..

245

.

.

47

48

.257
260

266

6

Table 9-21: Device Identification Register ..201
Table 9-22:Implementation Register Descriptions...202
Table 9-23:EJTAG Control Register Descriptions ...203
Table 9-24: Fastdata Register Field Description ...208
Table 9-25: Operation of the FASTDATA access ..208
Table 9-26: A List of Coprocessor 0 Trace Registers ...215
Table 9-27: TCB EJTAG registers ..215
Table 9-28: Registers selected byTCBCONTROLBREG ..2
Table 9-29:TCBCONTROLA Register Field Descriptions ..
Table 9-30:TCBCONTROLB Register Field Descriptions ..
Table 9-31: Clock Ratio encoding of the CR field ..222
Table 9-32:TCBDATA Register Field Descriptions ..223
Table 9-33:TCBCONFIG Register Field Descriptions ...223
Table 9-34:TCBTW Register Field Descriptions ...224
Table 9-35:TCBRDP Register Field Descriptions ...225
Table 9-36:TCBWRP Register Field Descriptions ..225
Table 9-37:TCBSTP Register Field Descriptions ..226
Table 9-38:TCBTRIGx Register Field Descriptions ...226
Table 10-1: Byte Access Within a Word..239
Table 11-1: Encoding of theOpcode Field ..
Table 11-2:Special Opcode encoding of Function Field...246
Table 11-3:Special2 Opcode Encoding of Function Field ...246
Table 11-4:Special3 Opcode Encoding of Function Field ...246
Table 11-5:RegImm Encoding of rt Field ..247
Table 11-6:COP2 Encoding of rs Field...247
Table 11-7:COP2 Encoding of rt Field When rs=BC2 ...2
Table 11-8:COP0 Encoding of rs Field...247
Table 11-9:COP0 Encoding of Function Field When rs=CO ...2
Table 11-10: Instruction Set ..248
Table 11-11: Usage of Effective Address ..255
Table 11-12: Encoding of Bits[17:16] of CACHE Instruction ..256
Table 11-13: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared....................................
Table 11-14: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set. ErrCtl[SPR] Cleared
Table 11-15: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set..260
Table 11-16: Values of thehint Field for the PREF Instruction ..
Table 12-1: Symbols Used in the Instruction Encoding Tables ...284
Table 12-2: MIPS16 Encoding of the Opcode Field ..285
Table 12-3: MIPS16 JAL(X) Encoding of the x Field ...285
Table 12-4: MIPS16 SHIFT Encoding of the f Field ...285
Table 12-5: MIPS16 RRI-A Encoding of the f Field ...285
Table 12-6: MIPS16 I8 Encoding of the funct Field..285
Table 12-7: MIPS16 RRR Encoding of the f Field ..286
Table 12-8: MIPS16 RR Encoding of the Funct Field ...286
Table 12-9: MIPS16 I8 Encoding of the s Field when funct=SVRS ...286
Table 12-10: MIPS16 RR Encoding of the ry Field when funct=J(AL)R(C) ..286
Table 12-11: MIPS16 RR Encoding of the ry Field when funct=CNVT...28
Table 12-12: MIPS16 Load and Store Instructions..286
Table 12-13: MIPS16 Save and Restore Instructions...287
Table 12-14: MIPS16 ALU Immediate Instructions ..287
Table 12-15: MIPS16 Arithmetic Two or Three Operand Register Instructions...287
Table 12-16: MIPS16 Special Instructions...288
Table 12-17: MIPS16 Multiply and Divide Instructions..288
Table 12-18: MIPS16 Jump and Branch Instructions ..288
Table 12-19: MIPS16 Shift Instructions...289
Table A-1: Revision History ...291
x MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

ssor
turing

pherals
ghly
ers to

twork,

in the

DU.

ler

dition,
s are
ords
cache
ddress

PS16e
ction
m

equire

rative

nd with
dress
tracing,
Chapter 1

Introduction to the MIPS32™ 4KE™ Processor Core Family

The MIPS32™ 4KE™ core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS RISC proce
core family intended for custom system-on-silicon applications. The core is designed for semiconductor manufac
companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peri
with a high-performance RISC processor. A 4KE core is fully synthesizable to allow maximum flexibility; it is hi
portable across processes and can easily be integrated into full system-on-silicon designs. This allows develop
focus their attention on end-user specific characteristics of their product.

The 4KE core is ideally positioned to support new products for emerging segments of the digital consumer, ne
systems, and information management markets, enabling new tailored solutions for embedded applications.

1.1 The 4KEc™, 4KEm™, and 4KEp™ Cores

The 4KE family has three members: the 4KEc™, 4KEm™, and 4KEp™ cores. The three devices differ mainly
type of multiply-divide unit (MDU) and the Memory Management Unit (MMU).

• The 4KEc core contains a fully-associative Translation Lookaside Buffer (TLB)-based MMU and pipelined M

• The 4KEm core contains a fixed mapping translation (FMT) mechanism in the MMU, that is smaller and simp
than the TLB-based implementation used in the 4KEc core. A pipelined MDU (like the 4KEc core) is used.

• The 4KEp core contains the same FMT-based MMU (like the 4KEm core), but a smaller non-pipelined MDU.

The term4KE coreas used in this document, generally refers to all cores in the 4KE family. When referring to
characteristics unique to an individual family member, the specific core type (4KEc, 4KEm, or4KEp core) will be
identified.

On a 4KE core, instruction and data caches are optional and fully programmable from 0 - 64 Kbytes in size. In ad
each cache can be organized as direct-mapped, 2-way, 3-way, or 4-way set associative. On a cache miss, load
blocked only until the first critical word becomes available. The pipeline resumes execution while the remaining w
are being written to the cache. Both caches are virtually indexed and physically tagged. Virtual indexing allows the
to be indexed in the same clock in which the address is generated rather than waiting for the virtual-to-physical a
translation in the TLB.

The core implements the MIPS32 Release 2 Instruction Set Architecture (ISA), and may optionally support the MI
Application Specific Extension (ASE) for code compression. The MMU of the 4KEc core contains a 4-entry instru
TLB (ITLB), a 4-entry data TLB(DTLB), and a 16 dual-entry joint TLB (JTLB) with variable page sizes. The 4KE
and 4KEp cores contain a simplified fixed mapping translation (FMT) mechanism, for applications that do not r
the full capabilities of a TLB.

The 4KEc and 4KEm Multiply-Divide Unit (MDU) supports a maximum issue rate of one 32x16 multiply
(MUL/MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock,
or one 32x32 MUL, MADD, or MSUB every other clock. The MDU on the 4KEp core uses an area-sensitive ite
algorithm.

The basic Enhanced JTAG (EJTAG) features provide CPU run control with stop, single stepping and re-start, a
software breakpoints through the SDBBP instruction. Additional EJTAG features - instruction and data virtual ad
hardware breakpoints, connection to an external EJTAG probe through the Test Access Port (TAP), and PC/Data
may optionally be included.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 1

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

ctions:

on)
.The rest of this chapter provides an overview of the MIPS32 4KE processor core and consists of the following se

• Section 1.2, "Features"

• Section 1.3, "4KE™ Core Block Diagram"

1.2 Features

• 5-stage pipeline

• 32-bit Address and Data Paths

• MIPS32-Compatible Instruction Set

– Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)

– Targeted multiply instruction (MUL)

– Zero and one detect instructions (CLZ, CLO)

– Wait instruction (WAIT)

– Conditional move instructions (MOVZ, MOVN)

– Prefetch instruction (PREF)

• MIPS32 Enhanced Architecture (Release 2) Features

– Vectored interrupts and support for an external interrupt controller

– Programmable exception vector base

– Atomic interrupt enable/disable

– GPR shadow sets

– Bit field manipulation instructions

– Improved virtual memory support (smaller page sizes and hooks for more extensive page table manipulati

• MIPS16e Application Specific Extension

– 16 bit encodings of 32-bit instructions to improve code density

– Special PC-relative instructions for efficient loading of addresses and constants

– Data type conversion instructions (ZEB, SEB, ZEH, SEH)

– Compact jumps (JRC, JALRC)

– Stack frame set-up and tear down “macro” instructions (SAVE and RESTORE)

• Programmable Cache Sizes

– Individually configurable instruction and data caches

– Sizes from 0 up to 64 Kbytes

– Direct-mapped, or 2-, 3-, 4-Way set associative

– Loads that miss in the cache are blocked only until critical word is available

– Supports Write-back with write-allocation and Write-through with or without write-allocation

– 128-bit (16-byte) cache line size, word sectored - suitable for standard 32-bit wide single-port SRAM

– Virtually indexed, physically tagged

– Cache line locking support

– Non-blocking prefetches
2 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

1.2 Features

nd

ild-time
• Scratchpad RAM support

– Replace one way of instruction cache and/or data cache

– Maximum 20-bit index (1M address)

– Memory-mapped registers attached to scratchpad port can be used as a coprocessor interface

• R4000 Style Privileged Resource Architecture

– Count/compare registers for real-time timer interrupts

– Instruction and data watch registers for software breakpoints

• Programmable Memory Management Unit (4KEc core only)

– 16 dual-entry MIPS32-style JTLB with variable page sizes

– 4-entry instruction TLB

– 4-entry data TLB

• Programmable Memory Management Unit (4KEm and 4KEp cores only)

– Simple Fixed Mapping Translation (FMT)

– Address spaces mapped using register bits

• Simple Bus Interface Unit (BIU)

– All I/Os fully registered

– Separate unidirectional 32-bit address and data buses

– Two 16-byte collapsing write buffers

• CorExtend™ User Defined Instruction capability (access to this feature is available in the 4KE Pro™ cores a
requires a separate license)

– Optional support for the CorExtend feature allows users to define and add instructions to the core (as a bu
option)

– Single or multi-cycle instructions

– Source operations from register, immediate field, or local state

– Destination to a register or local state

• Full featured Coprocessor 2 Interface

– Almost all I/Os registered

– Separate unidirectional 32-bit instruction and data buses

– Support for branch on Coprocessor condition

– Processor to/from Coprocessor register data transfers

– Direct memory to/from Coprocessor register data transfers

• Multiply-Divide Unit (4KEc and 4KEm cores)

– Maximum issue rate of one 32x16 multiply per clock

– Maximum issue rate of one 32x32 multiply every other clock

– Early-in divide control. Minimum 11, maximum 34 clock latency on divide

• Multiply-Divide Unit (4KEp core)

– Iterative multiply and divide. 32 or more cycles for each instruction.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 3

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

d 1 data

ntation.
d blocks

aside
• Power Control

– No minimum frequency

– Power-down mode (triggered by WAIT instruction)

– Support for software-controlled clock divider

– Support for extensive use of fine-grain clock gating

• EJTAG Debug Support

– CPU control with start, stop and single stepping

– Software breakpoints via the SDBBP instruction

– Optional hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2 instruction an
breakpoint, or no breakpoints

– Optional Test Access Port (TAP) facilitates high speed download of application code

– Optional EJTAG Trace hardware to enable real-time tracing of executed code

1.3 4KE™ Core Block Diagram

The 4KE core contains both required and optional blocks, as shown in the block diagram inFigure 1-1 on page 5.
Required blocks are the lightly shaded areas of the block diagram and are always present in any core impleme
Optional blocks may be added to the base core, depending on the needs of a specific implementation. The require
are as follows:

• Execution Unit

• Multiply-Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Cache Controller

• Bus Interface Unit (BIU)

• Power Management

Optional blocks include:

• Instruction Cache (I-cache)

• Data Cache (D-cache)

• Enhanced JTAG (EJTAG) Controller

• MIPS16e support

• Coprocessor 2 Interface (CP2)

• CorExtend™ User Defined Instructions (UDI)

Figure 1-1 shows a block diagram of a 4KE core. The MMU can be implemented using either a translation look
buffer in the case of the 4KEc core, or a fixed mapping (FMT) in the case of the 4KEm and 4KEp cores. Refer toChapter
3, “Memory Management of the 4KE™ Core,” on page 34 for more information.
4 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

1.3 4KE™ Core Block Diagram

tions

r three
tching
is fully

ns are

sists
s, and
Figure 1-1 4KE™ Processor Core Block Diagram

1.3.1 Required Logic Blocks

The following subsections describe the various required logic blocks of the 4KE processor core.

1.3.1.1 Execution Unit

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) opera
(logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two 32-bit
general-purpose registers(GPRs) used for scalar integer operations and address calculation. Optionally, one o
additional register file shadow sets (each containing thirty-two registers) can be added to minimize context swi
overhead during interrupt/exception processing. The register file consists of two read ports and one write port and
bypassed to minimize operation latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Address unit for calculating the next instruction address

• Logic for branch determination and branch target address calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructio
followed closely by consumers of their results

• Zero/One detect unit for implementing the CLZ and CLO instructions

• ALU for performing bitwise logical operations

• Shifter and Store aligner

1.3.1.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations. In the 4KEc and 4KEm processors, the MDU con
of a 32x16 booth-encoded multiplier, result-accumulation registers (HI and LO), multiply and divide state machine

System
Coprocessor

MDU

TLB or FMT

MMU

D-cache

BIU

TAP

EJTAG

 Power
Mgmt

I-cache Off-Chip
Debug I/F

Fixed/Required Optional

 Execution Unit
(RF/ALU/Shift

T
hi

n
I/F

O
n-

C
hi

p
B

us
(e

s)

Trace

Off/On-Chip
Trace I/F

CP2

UDI

On-Chip
Coprocessor 2

Cache
Controller
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 5

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

f a
ycle.

ations
plete.
skip
ses a

isters
these
e also
. An
the

sult

ut of

e

s and
re

e
de), and
ce of
”
”

is

are
slating
used to
To
sults

TLB,
irtual
all multiplexers and control logic required to perform these functions. This pipelined MDU supports execution o
16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock c
Appropriate interlocks are implemented to stall the issue of back-to-back 32x32 multiply operations. Divide oper
are implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles in worst case to com
Early-in to the algorithm detects sign extension of the dividend, if it is actual size is 24, 16 or 8 bit. the divider will
7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU instruction while a divide is still active cau
pipeline stall until the divide operation is completed.

The area-efficient, non-pipelined MDU in the 4KEp core consists of a 32-bit full-adder, result-accumulation reg
(HI and LO), a combined multiply/divide state machine, and all multiplexers and control logic required to perform
functions. It performs any multiply using 32 cycles in an iterative 1 bit per clock algorithm. Divide operations ar
implemented with a simple 1 bit per clock iterative algorithm (no early-in) and require 35 clock cycles to complete
attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes a pipeline stall until
operation is completed.

The 4KE implements an additional multiply instruction, MUL, which specifies that lower 32-bits of the multiply re
be placed in the register file instead of the HI/LO register pair. By avoiding the explicit move from LO (MFLO)
instruction, required when using the LO register, and by supporting multiple destination registers, the throughp
multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (MSUB/MSUBU), are used to perform th
multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the
product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operand
then subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations a
commonly used in Digital Signal Processor (DSP) algorithms.

1.3.1.3 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, cache protocols, th
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mo
the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and presen
build-time options are available by accessing the CP0 registers. Refer toChapter 5, “CP0 Registers of the 4KE™ Core,
on page 88for more information on the CP0 registers. Refer toChapter 9, “EJTAG Debug Support in the 4KE™ Core,
on page 169 for more information on EJTAG debug registers.

1.3.1.4 Memory Management Unit (MMU)

The 4KE core contains an MMU that interfaces between the execution unit and the cache controller, shown inFigure
1-2 on page 7. Although the 4KEc core implements a 32-bit architecture, the Memory Management Unit (MMU)
modeled after the MMU found in the 64-bit R4000 family, as defined by the MIPS32 architecture.

The 4KEc core implements its MMU based on a Translation Lookaside Buffer (TLB). The TLB consists of three
translation buffers: a 16 dual-entry fully associative Joint TLB (JTLB), a 4-entry fully associative Instruction TLB
(ITLB) and a 4-entry fully associative data TLB (DTLB). The ITLB and DTLB, also referred to as the micro TLBs,
managed by the hardware and are not software visible. The micro TLBs contain subsets of the JTLB. When tran
addresses, the corresponding micro TLB (I or D) is accessed first. If there is not a matching entry, the JTLB is
translate the address and refill the micro TLB. If the entry is not found in the JTLB, then an exception is taken.
minimize the micro TLB miss penalty, the JTLB is looked up in parallel with the DTLB for data references. This re
in a one cycle stall for a DTLB miss and a two cycle stall for an ITLB miss.

The 4KEm and 4KEp cores implement a FMT-based MMU instead of a TLB-based MMU. The FMT replaces the J
ITLB and DTLB in the 4KEc core. The FMT performs a simple translation to get the physical address from the v
address. Refer toChapter 3, “Memory Management of the 4KE™ Core,” on page 34for more information on the FMT.
6 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

1.3 4KE™ Core Block Diagram

figure

s. For
Kbytes

ache.

cache,

e

Figure 1-2 on page 7shows how the address translation mechanism interacts with cache access. The JTLB in this
is only present on the 4KEc core.

Figure 1-2 Address Translation During a Cache Access

1.3.1.5 Cache Controllers

The data and instruction cache controllers support caches of various sizes, organizations and set associativitie
example, the data cache can be 2 Kbytes in size and 2-way set associative, while the instruction cache can be 8
in size and 4-way set associative. There is a separate cache controller for the instruction cache and the data c

Each cache controller contains and manages a one-line fill buffer. Besides accumulating data to be written to the
the fill buffer is accessed in parallel with the cache and data can be bypassed back to the core.

Refer toChapter 7, “Caches of the 4KE™ Core,” on page 156 for more information on the instruction and data cach
controllers.

I-cache

D-cache

Comparator

Comparator

Instruction
Hit/Miss

Data
Hit/Miss

Virtual Address

Virtual Address

ITLB/FMT2

JTLB1

DTLB/FMT

Instruction
Address

Calculator

Data
Address

Calculator

1. JTLB only exists in the 4KEc core

2. ITLB/DTLB implemented in the 4KEc core only. FMT implemented inthe 4KEm and 4KEp cores.

Entry

EntryIVA

Instruction
Address
Calculator

FMT

Data
Address
Calculator PhysicalVirtual

Address

Virtual
Address

Address

Physical
Address

SRAM
interface

Data
SRAM

Instn
SRAM
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 7

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

 of a
them

r
stalling

ock of
er

ent, and
he rest
idle

are
-down
ode.

t.

e of
ccess
cient

e back

nd
 rather
it, and a
me. The
1.3.1.6 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementation
32-byte collapsing write buffer. The purpose of this buffer is to hold and combine write transactions before issuing
to the external interface. Since the data caches for all cores follow a write-through cache policy, the write buffe
significantly reduces the number of write transactions on the external interface as well as reducing the amount of
in the core due to issuance of multiple writes in a short period of time.

The write buffer is organized as two 16-byte buffers. Each buffer contains data from a single 16-byte aligned bl
memory. One buffer contains the data currently being transferred on the external interface, while the other buff
contains accumulating data from the core.

1.3.1.7 Power Management

The core offers a number of power management features, including low-power design, active power managem
power-down modes of operation. The core is a static design that supports a WAIT instruction designed to signal t
of the device that execution and clocking should be halted, hence reducing system power consumption during
periods.

The core provides two mechanisms for system-level, low-power support:

• Register-controlled power management

• Instruction-controlled power management

In register-controlled power management mode the core provides three bits in the CP0 Status register for softw
control of the power management function and allows interrupts to be serviced even when the core is in power
mode. In instruction-controlled power-down mode execution of the WAIT instruction is used to invoke low-power m

Refer toChapter 8, “Power Management of the 4KE™ Core,” on page 166for more information on power managemen

1.3.2 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagram inFigure 1-1 on page 5.

1.3.2.1 MIPS16e™ Application Specific Extension

The 4KE core includes optional support for the MIPS16e ASE. This ASE improves code density through the us
16-bit encodings of MIPS32 instructions plus some MIPS16e-specific instructions. PC relative loads allow quick a
to constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for effi
subroutine entry/exit. Sign- and zero-extend instructions improve handling of 8bit and 16bit datatypes.

A decompressor converts the MIPS16e 16-bit instructions fetched from the instruction cache or external interfac
into 32-bit instructions for execution by the core.

1.3.2.2 Instruction Cache

The instruction cache is an optional on-chip memory array of up to 64 Kbytes. The cache is virtually indexed a
physically tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access
than having to wait for the physical address translation. The tag holds 22 bits of the physical address, a valid b
lock bit. There is a separate tag array which holds data used in the Least Recently Used (LRU) replacement sche
LRU array ranges from 0-6 bits depending on associativity.
8 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

1.3 4KE™ Core Block Diagram

-line”
vailable
t) on a

sically
olds 22
ranges

ruction
t be

er-entry

it array

uction

o data

 virtual
e

ts can
th virtual
ompare,

ay also
r

tored
 can

powerful

upport
All cores support instruction cache locking. Cache locking allows critical code to be locked into the cache on a “per
basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is always a
on all instruction cache entries. Entries can be marked as locked or unlocked (by setting or clearing the lock bi
per-entry basis using the CACHE instruction.

The LRU array must be bit-writable. The tag and data arrays only need to be word-writable.

1.3.2.3 Data Cache

The data cache is an optional on-chip memory array of up to 64 Kbytes. The cache is virtually indexed and phy
tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access. The tag h
bits of the physical address, a valid bit, and a lock bit. A separate array holds the dirty and LRU bits; this array
from 0-10 bits depending on the associativity.

In addition to instruction cache locking, all cores also support a data cache locking mechanism identical to the inst
cache, with critical data segments to be locked into the cache on a “per-line” basis. The locked contents canno
selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or unlocked on a p
basis using the CACHE instruction.

The physical data cache memory must be byte writable to support sub-word store operations. The LRU/dirty b
must be bit-writable.

1.3.2.4 EJTAG Controller

All cores provide basic EJTAG support with debug mode, run control, single step and software breakpoint instr
(SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code.

Optional EJTAG features include hardware breakpoints. A 4KE core may have four instruction breakpoints and tw
breakpoints, two instruction breakpoints and one data breakpoint, or no breakpoints. The hardware instruction
breakpoints can be configured to generate a debug exception when an instruction is executed anywhere in the
address space. Bit mask and Address Space Identifier (ASID) values may apply in the address compare. Thes
breakpoints are not limited to code in RAM like the software instruction breakpoint (SDBBP). The data breakpoin
be configured to generate a debug exception on a data transaction. The data transaction may be qualified with bo
address, data value, size and load/store transaction type. Bit mask and ASID values may apply in the address c
and byte mask may apply in the value compare.

An optional TAP, enabling communication between an EJTAG probe and the CPU through a dedicated port, m
be applied to the core. This provides the possibility for debugging without debug code in the application, and fo
download of application code to the system.

Another optional block is EJTAG Trace which enables real-time tracing capability. The trace information can be s
to either an on-chip trace memory, or to an off-chip trace probe. The trace of program flow is highly flexible and
include instruction program counter as well as data addresses and data values. The trace features provides a
software debugging mechanism.

Refer toChapter 9, “EJTAG Debug Support in the 4KE™ Core,” on page 169 for more information on the EJTAG
features.

1.3.2.5 Coprocessor 2 Interface (CP2)

The optional coprocessor 2 (CP2) interface provides a full-featured interface for a coprocessor. It provides full s
for all the MIPS32 COP2 instructions, with the exception of the 64-bit Load/Store instructions (LDC2/SDC2).
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 9

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

support

ions
core is
I, and

urpose
eneral
MIPS.

ilable
The CP2 interface can provide access to a graphics accelerator coprocessor or a simple register file. There is no
for the floating-point coprocessor COP1, which requires 64-bit data transfers.

Refer toChapter 11, “4KE™ Processor Core Instructions,” on page 242 for more information on the Coprocessor 2
supported instructions.

1.3.2.6 CorExtend™ User Defined Instructions (UDI)

This optional module contains (if implemented) support for CorExtend user defined instructions. These instruct
must be defined at build-time for the 4KE core. Access to UDI requires a separate license from MIPS, and the
then referred to as the 4KE Pro™ core. When licensed, 16 instructions in the opcode map are available for UD
each instruction can have single or multi-cycle latency. A UDI instruction can operate on any one or two general-p
registers or immediate data contained within the instruction, and can write the result of each instruction back to a g
purpose register or local register. Implementation details for UDI can be found in other documents available from

Refer to Section 11-3, "Special2 Opcode Encoding of Function Field" for a specification of the opcode map ava
for user defined instructions.
10 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 11

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

12 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.1 Pipeline Stages

ws the
ption.

uction
Chapter 2

Pipeline of the 4KE™ Core

The 4KE™ processor core implements a 5-stage pipeline similar to the original R3000 pipeline. The pipeline allo
processor to achieve high frequency while minimizing device complexity, reducing both cost and power consum
This chapter contains the following sections:

• Section 2.1, "Pipeline Stages"

• Section 2.2, "Instruction Cache Miss"

• Section 2.3, "Data Cache Miss"

• Section 2.4, "Multiply/Divide Operations"

• Section 2.5, "MDU Pipeline (4KEc™ and 4KEm™ Cores)"

• Section 2.6, "MDU Pipeline (4KEp™ Core)"

• Section 2.7, "Branch Delay"

• Section 2.8, "Data Bypassing"

• Section 2.10, "Interlock Handling"

• Section 2.11, "Slip Conditions"

• Section 2.12, "Instruction Interlocks"

• Section 2.13, "Hazards"

2.1 Pipeline Stages

The pipeline consists of five stages:

• Instruction (I stage)

• Execution (E stage)

• Memory (M stage)

• Align (A stage)

• Writeback (W stage)

A 4KE core implements a “Bypass” mechanism that allows the result of an operation to be sent directly to the instr
that needs it without having to write the result to the register and then read it back.

Figure 2-1 on page 14 shows the operations performed in each pipeline stage of the 4KE processor.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 13

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core
Figure 2-1 4KE™ Core Pipeline Stages

Figure 2-2 shows the operations performed in each pipeline stage of the 4KEm processor core.

Figure 2-2 4KEm™ Core Pipeline Stages

Figure 2-3 shows the operations performed in each pipeline stage of the 4KEp processor core.

Figure 2-3 4KEp™ Core Pipeline Stages

: I-TLB Look-up

MUL

Divide

D-Cache

I E M A W

I-Cache ALU Op

MDU ResMult, CPA

MDU Res

MDU ResCPA

Sign Adjust

MDU Res

RegW

32x32

16x16,

Mult,

RegR

RegW

I-AC2I-AC1

AlignI Dec D-AC

A->E Bypass
M->E Bypass

IU
-P

ip
el

in
e

M
D

U
-P

ip
e

A->E Bypass

I-TLB
D-TLB

: I$ Tag and Data read

: Instruction Decode
: Register file read
: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation
: D$ Tag and Data read

: Load data aligner
: Register file write
: MUL instruction
: Carry Propagate Adder
: Multiply and Multiply Accumulate instructions
: Divide instructions
: Last stage of Divide is a sign adjust

: One or more cycles.

: Result can be read from MDU

D-AC

I Dec

I-Cache

RegR
I-AC2I-AC1

ALU Op

D-Cache

MUL

Align
RegW

CPA
Mult, Macc

Divide
Sign Adjust
MDU Res

I-TLB

: D-TLB Look-upD-TLB

MUL

Divide

: I-Cache Tag and Data read
: Instruction Decode
: Register file read
: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation
: D-Cache Tag and Data read
: Load data aligner
: Register file write
: MUL instruction
: Carry Propagate Adder
: Multiply and Multiply Accumulate instructions
: Divide instructions
: Last stage of Divide is a sign adjust

: One or more cycles.

: Result can be read from MDU

I E M A W

I-Cache ALU Op

MDU ResMult, CPA

MDU Res

MDU ResCPA

Sign Adjust

MDU Res

RegW

32x32

16x16,

Mult,

RegR

RegW

D-AC

I Dec

I-AC2I-AC1

Align

I-Cache

I Dec

RegR
I-AC2I-AC1

ALU Op
D-AC

MUL

Align
RegW

CPA
Mult, Macc

Divide
Sign Adjust
MDU Res

A->E Bypass
M->E Bypass

IU
-P

ip
el

in
e

M
D

U
-P

ip
e

A->E Bypass

D-Cache

D-Cache

MUL

Multiply, Divide

: Instruction Decode
: Register file read
: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation

: Load data aligner
: Register file write
: MUL instruction
: Multiply, Multiply Acc. And Divide

: One or more cycles.

: Result can be read from MDU

I E M A W

ALU Op

MDU Res

MDU Res

RegW
RegR

RegW

D-AC

I Dec

I-AC2I-AC1

AlignI Dec

RegR
I-AC2I-AC1

ALU Op
D-AC

MUL

Align
RegW

Multiply,
MDU Res

A->E Bypass
M->E Bypass

IU
-P

ip
e

M
D

U
-P

i

A->E Bypass

: I-Cache Tag and Data readI-Cache

: D-Cache Tag and Data readD-Cache

I-Cache
D-Cache
14 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.1 Pipeline Stages

branch

the

ctions

stage
2.1.1 I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from the instruction cache.

• The I-TLB performs a virtual-to-physical address translation (4KEc core only).

• MIPS16e instructions are converted into MIPS32-like instructions.

2.1.2 E Stage: Execution

During the Execution stage:

• Operands are fetched from the register file.

• Operands from the M and A stage are bypassed to this stage.

• The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register instructions.

• The ALU calculates the data virtual address for load and store instructions.

• The ALU determines whether the branch condition is true and calculates the virtual branch target address for
instructions.

• Instruction logic selects an instruction address.

• All multiply and divide operations begin in this stage.

2.1.3 M Stage: Memory Fetch

During the Memory Fetch stage:

• The arithmetic or logic ALU operation completes.

• The data cache access and the data virtual-to-physical address translation are performed for load and store
instructions.

• Data TLB (4KEc core only) and data cache lookup are performed and a hit/miss determination is made.

• A 16x16 or 32x16 MUL operation completes in the array and stalls for one clock in the M stage to complete
carry-propagate-add in the M stage (4KEc and 4KEm cores).

• A 32x32 MUL operation stalls for two clocks in the M stage to complete the second cycle of the array and the
carry-propagate-add in the M stage (4KEc and 4KEm cores).

• A multiply operation stalls the MDU pipeline for 31 cycles in the M stage (4KEp core).

• Multiply and divide calculations proceed in the MDU. If the calculation completes before the IU moves the
instruction past the M stage, then the MDU holds the result in a temporary register until the IU moves the instru
to the A stage (and it is consequently known that it won’t be killed).

2.1.4 A Stage: Align

During the Align stage:

• A separate aligner aligns loaded data with its word boundary.

• A MUL operation makes the result available for writeback. The actual register writeback is performed in the W
(all 4KE cores).

• From this stage load data or a result from the MDU are available in the E stage for bypassing.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 15

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

resides
truction
E stage
is busy,

the array

bypass
en to the

 cache. A

s in the
equests

 the data.

d to the
the entire
2.1.5 W Stage: Writeback

During the Writeback stage:

• For register-to-register or load instructions, the result is written back to the register file.

2.2 Instruction Cache Miss

When the instruction cache is indexed, the instruction address is translated to determine if the required instruction
in the cache. An instruction cache miss occurs when the requested instruction address does not reside in the ins
cache. When a cache miss is detected in the I stage, the core transitions to the E stage. The pipeline stalls in the
until the miss is resolved. The bus interface unit must select the address from multiple sources. If the address bus
the request will remain in this arbitration stage (B-ASel inFigure 2-4 on page 16) until the bus is available. The core
drives the selected address onto the bus. The number of clocks before data is returned is then determined by
containing the data.

Once the data is returned to the core, the critical word is written to the instruction register for immediate use. The
mechanism allows the core to use the data as soon as it arrives, as opposed to having the entire cache line writt
instruction cache, then reading out the required word.

Figure 2-4 on page 16 shows a timing diagram of an instruction cache miss.

Figure 2-4 Instruction Cache Miss Timing

2.3 Data Cache Miss

When the data cache is indexed, the data address is translated to determine if the required data resides in the
data cache miss occurs when the requested data address does not reside in the data cache.

When a data cache miss is detected in the M stage (D-TLB), the core transitions to the A stage. The pipeline stall
A stage until the miss is resolved (requested data is returned). The bus interface unit arbitrates between multiple r
and selects the correct address to be driven onto the bus (B-ASel inFigure 2-5 on page 17). The core drives the selected
address onto the bus. The number of clocks before data is returned is then determined by the array containing

Once the data is returned to the core, the critical word of data passes through the aligner before being forwarde
execution unit. The bypass mechanism allows the core to use the data as soon as it arrives, as opposed to having
cache line written to the data cache, then reading out the required word.

Figure 2-5 on page 17 shows a timing diagram of a data cache miss.

EEE EI

I Dec
I-Cache

I-TLB I-TLB B-ASel Bus* IC-Bypass
RegRd ALU Op

I-A2I-A1

* Contains all of the cycles that address and data are utilizing the bus.
16 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.4 Multiply/Divide Operations

tions

 file
and

tions.
e HI
t from
ms.

the
llowing
e used
DU

ine for
t stall
stem

ers (HI
hown

 array.
ultiplier

can
x32
Figure 2-5 Load/Store Cache Miss Timing

2.4 Multiply/Divide Operations

The 4KE core implement the standard MIPS II™ multiply and divide instructions. Additionally, several new instruc
were standardized in the MIPS32 architecture for enhanced performance.

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general purpose register
instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register,
by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU) multiply-subtract (MSUB), and
multiply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract opera
The MADD/MADDU instruction multiplies two numbers and then adds the product to the current contents of th
and LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and then subtracts the produc
the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are commonly used in DSP algorith

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations write to
general purpose registers (GPR). Because MDU operations write to different registers than integer operations, fo
integer instructions can execute before the MDU operation has completed. The MFLO and MFHI instructions ar
to move data from the HI/LO register pair to the GPR file. If a MFLO or MFHI instruction is issued before the M
operation completes, it will stall to wait for the data.

2.5 MDU Pipeline (4KEc™ and 4KEm™ Cores)

The 4KEc and 4KEm processor cores contain an autonomous multiply/divide unit (MDU) with a separate pipel
multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does no
when the IU pipeline stalls. This allows multi-cycle MDU operations, such as a divide, to be partially masked by sy
stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier array, a carry propagate adder, result/accumulation regist
and LO), multiply and divide state machines, and all necessary multiplexers and control logic. The first number s
(‘32’ of 32x16) represents thers operand. The second number (‘16’ of 32x16) represents thert operand. The core only
checks the latter(rt) operand value to determine how many times the operation must pass through the multiplier
The 16x16 and 32x16 operations pass through the multiplier array once. A 32x32 operation passes through the m
array twice.

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations
be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32

D-TLB
D-CacheALU1

B-ASel

RegR

Bus* RegWAlignDC Bypass

* Contains all of the time that address and data are utilizing the bus.

WAAAAME
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 17

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

ons
 the
stall

e first

without
will

in its
e IU
multiply operations. Multiply operand size is automatically determined by logic built into the MDU. Divide operati
are implemented with a simple 1 bit per clock iterative algorithm with an early in detection of sign extension on
dividend(rs). Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline
until the divide operation is completed.

Table 2-1 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for th
instruction to produce the result needed by the second instruction.

In Table 2-1a latency of one means that the first and second instructions can be issued back to back in the code
the MDU causing any stalls in the IU pipeline. A latency of two means that if issued back to back, the IU pipeline
be stalled for one cycle. MUL operations are special because it needs to stall the IU pipeline in order to mainta
register file write slot. Consequently the MUL 16x16 or 32x16 operation will always force a one cycle stall of th
pipeline, and the MUL 32x32 will force a two cycle stall. If the integer instruction immediately following the MUL
operation uses its result, an additional stall is forced on the IU pipeline.

Table 2-1 4KEc™ and 4KEm™ Core MDU Instruction Latencies

Size of Operand
1st Instruction[1]

Instruction Sequence
Latency
Clocks1st Instruction 2nd Instruction

16 bit
MULT/MULTU,

MADD/MADDU or
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU or

MFHI/MFLO
1

32 bit
MULT/MULTU,

MADD/MADDU, or
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU or

MFHI/MFLO
2

16 bit MUL Integer operation[2] 2[3]

32 bit MUL Integer operation[2] 2[3]

8 bit DIVU MFHI/MFLO 9

16 bit DIVU MFHI/MFLO 17

24 bit DIVU MFHI/MFLO 25

32 bit DIVU MFHI/MFLO 33

8 bit DIV MFHI/MFLO 10[4]

16 bit DIV MFHI/MFLO 18[4]

24 bit DIV MFHI/MFLO 26[4]

32 bit DIV MFHI/MFLO 34[4]

any MFHI/MFLO Integer operation[2] 2

any MTHI/MTLO MADD/MADDU or
MSUB/MSUBU 1

Note: [1] For multiply operations, this is thert operand. For divide operations, this is thers operand.

Note: [2] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

Note: [3] This does not include the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that the MUL operation causes irrespective
of the following instruction.These stalls do not add to the latency of 2.

Note: [4] If both operands are positive, then the Sign Adjust stage is bypassed. Latency is then the same as for DIVU.
18 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.5 MDU Pipeline (4KEc™ and 4KEm™ Cores)

’ refers

tion

 stages,
line are

are
ultiply

the
peline
Table 2-2 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply
accumulate/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repeat rate
to the case where the first MDU instruction (in the table below) if back-to-back with the second instruction.

Figure 2-6 below shows the pipeline flow for the following sequence:

1. 32x16 multiply (Mult1)

2. Add

3. 32x32 multiply (Mult2)

4. Subtract (Sub)

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 multiply opera
requires two clocks in the MMDU pipe-stage. The MDU pipeline is shown as the shaded areas ofFigure 2-6and always
starts a computation in the final phase of the E stage. As shown in the figure, the MMDU pipe-stage of the MDU pipeline
occurs in parallel with the M stage of the IU pipeline, the AMDU stage occurs in parallel with the A stage, and the WMDU
stage occurs in parallel with the W stage. In general this need not be the case. Following the 1st cycle of the M
the two pipelines need not be synchronized. This does not present a problem because results in the MDU pipe
written to the HI and LO registers, while the integer pipeline results are written to the register file.

Figure 2-6 MDU Pipeline Behavior During Multiply Operations (4KEc™ & 4KEm™ Processors)

The following is a cycle-by-cycle analysis ofFigure 2-6.

1. The first 32x16 multiply operation (Mult1) is fetched from the instruction cache and enters the I stage.

2. An Add operation enters the I stage. The Mult1 operation enters the E stage. The integer and MDU pipelines sh
the I and E pipeline stages. At the end of the E stage in cycle 2, the MDU pipeline starts processing the m
operation (Mult1).

3. In cycle 3 a 32x32 multiply operation (Mult2) enters the I stage and is fetched from the instruction cache. Since
Add operation has not yet reached the M stage by cycle 3, there is no activity in the M stage of the integer pi
at this time.

Table 2-2 4KEc™ and 4KEm™ Core MDU Instruction Repeat Rates

Operand Size of
1st Instruction

Instruction Sequence
Repeat
Rate1st Instruction 2nd Instruction

16 bit
MULT/MULTU,

MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU 1

32 bit
MULT/MULTU,

MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU 2

I E A WM

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

Mult1

Add

Mult2

I E AMDU WMDUMMDU

I E AMDU WMDUMMDUMMDU

Sub

I E A WM
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 19

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

32x32
Add

 MDU
is

HI/LO

 MDU
is
4. In cycle 4 the Subtract instruction enters I stage. The second multiply operation (Mult2) enters the E stage. And the
Add operation enters M stage of the integer pipe. Since the Mult1 multiply is a 32x16 operation, only one clock is
required for the MMDU stage, hence the Mult1 operation passes to the AMDU stage of the MDU pipeline.

5. In cycle 5 the Subtract instruction enters E stage. The Mult2 multiply enters the MMDU stage. The Add operation
enters the A stage of the integer pipeline. The Mult1 operation completes and is written back in to the HI/LO
register pair in the WMDU stage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one clock, the
Mult2 remains in the MMDU stage in cycle 6. The Sub instruction enters M stage in the integer pipeline. The
operation completes and is written to the register file in the W stage of the integer pipeline.

7. The Mult2 multiply operation progresses to the AMDU stage, and the Sub instruction progress to the A stage.

8. The Mult2 operation completes and is written to the HI/LO registers pair the WMDU stage, while the Sub
instruction write to the register file in the W stage.

2.5.1 32x16 Multiply (4KEc™ & 4KEm™ Cores)

The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the integer and
pipelines. In the latter phase of the E stage, thers andrt operands arrive and the booth-recoding function occurs at th
time. The multiply calculation requires one clock and occurs in the MMDU stage. In the AMDU stage, the
carry-propagate-add (CPA) function occurs and the operation is completed. The result is ready to be read from the
registers in the WMDU stage.

Figure 2-7 shows a diagram of a 32x16 multiply operation.

Figure 2-7 MDU Pipeline Flow During a 32x16 Multiply Operation

2.5.2 32x32 Multiply (4KEc ™ & 4KEm™ Cores)

The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the integer and
pipelines. In the latter phase of the E stage, thers andrt operands arrive and the booth recoding function occurs at th
time. The multiply calculation requires two clocks and occurs in the MMDU stage. In the AMDU stage, the CPA function
occurs and the operation is completed.

Figure 2-8 shows a diagram of a 32x32 multiply operation.

Figure 2-8 MDU Pipeline Flow During a 32x32 Multiply Operation

Booth Array CPA

E MMDU AMDU WMDU

Clock 1 2 3 4

Res Rdy

Booth Array

E MMDU MMDU AMDU WMDU

CPAArray

Booth

Clock 1 2 3 4 5

Res Rdy
20 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.5 MDU Pipeline (4KEc™ and 4KEm™ Cores)

or

terative
djusted
5 or 23

even if
 adjust

he
2.5.3 Divide (4KEc™ & 4KEm™ Cores)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only f
positive operands, hence the first cycle of the MMDU stage is used to negate thers operand (RS Adjust) if needed. Note
that this cycle is spent even if the adjustment is not necessary. During the next maximum 32 cycles (3-34) an i
add/subtract loop is executed. In cycle 3 an early-in detection is performed in parallel with the add/subtract. The a
rs operand is detected to be zero extended on the upper most 8, 16 or 24 bits. If this is the case the following 7, 1
cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is spent
the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. The sign
stage is skipped if both operands are positive. In this case the Rem Adjust is moved to the AMDU stage.

Figure 2-9 on page 21, Figure 2-10 on page 21, Figure 2-11 on page 21andFigure 2-12 on page 22show the latency for
8, 16, 24 and 32 bit divide operations, respectively. The repeat rate is either 11, 19, 27 or 35 cycles (one less if tsign
adjust stage is skipped) as a second divide can be in theRS Adjust stage when the first divide is in theReg WR stage.

Figure 2-9 MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

Figure 2-10 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Figure 2-11 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-10 11 12

WMDU Stage

13

Sign Adjust

MMDU Stage

Add/Subtract

3

Early In

MDU Res Rdy

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-18 19 20

WMDU Stage

21

Sign Adjust

MMDU Stage

Add/Subtract

3

Early In

MDU Res Rdy

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-26 27 28

WMDU Stage

29

Sign Adjust

MMDU Stage

Add/Subtract

3

Early In

MDU Res Rdy
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 21

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

 not
stall
nd/or

te
ltiply
re
tive
rations

r the
Figure 2-12 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

2.6 MDU Pipeline (4KEp™ Core)

The multiply/divide unit (MDU) is a separate autonomous block for multiply and divide operations. The MDU is
pipelined, but rather performs the computations iteratively in parallel with the integer unit (IU) pipeline. It does not
when the IU pipeline stalls. This allows the long-running MDU operations to be partially masked by system stalls a
other integer unit instructions.

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide sta
machine and all multiplexers and control logic. A simple 1-bit per clock recursive algorithm is used for both mu
and divide operations. Using booth’s algorithm all multiply operations complete in 32 clocks. Two extra clocks a
needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not work with nega
numbers. Adjustment before and after are thus required depending on the sign of the operands. All divide ope
complete in 33 to 35 clocks.

Table 2-3 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary fo
second instruction to use the results of the first.

Table 2-3 4KEp™ Core Instruction Latencies

Operand Signs of
1st Instruction

(Rs,Rt)

Instruction Sequence
Latency
Clocks1st Instruction 2nd Instruction

any, any MULT/MULTU
MADD/MADDU,

MSUB/MSUBU, or
MFHI/MFLO

32

any, any MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO
34

any, any MUL Integer operation[1] 32

any, any DIVU MFHI/MFLO 33

pos, pos DIV MFHI/MFLO 33

any, neg DIV MFHI/MFLO 34

neg, pos DIV MFHI/MFLO 35

any, any MFHI/MFLO Integer operation[1] 2

any, any MTHI/MTLO MADD/MADDU,
MSUB/MSUBU 1

Note: [1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-34 35 36

WMDU Stage

37

Sign Adjust

MMDU Stage

Add/Subtract

3

Early In

MDU Res Rdy
22 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.6 MDU Pipeline (4KEp™ Core)

ithm

ne in

 in the

eeded
.

ands,
le is
ction.

r. Note
or if this
st
ck to

ing on
e last
2.6.1 Multiply (4KEp™ Core)

Multiply operations are executed using a simple iterative multiply algorithm. Using Booth’s approach, this algor
works for both positive and negative operands. The operation uses 32 cycles in MMDU stage to complete a multiplication.
The register writeback to HI and LO are done in the A stage. For MUL operations, the register file writeback is do
the WMDU stage.

Figure 2-13 shows the latency for a multiply operation. The repeat rate is 33 cycles as a second multiply can be
first MMDU stage when the first multiply is in AMDU stage.

Figure 2-13 4KEp™ MDU Pipeline Flow During a Multiply Operation

2.6.2 Multiply Accumulate (4KEp™ Core)

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stages are n
to perform the addition/subtraction. The operations uses 34 cycles in MMDU stage to complete the multiply-accumulate
The register writeback to HI and LO are done in the A stage.

Figure 2-14 shows the latency for a multiply-accumulate operation. The repeat rate is 35 cycles as a second
multiply-accumulate can be in the E stage when the first multiply is in the last MMDU stage.

Figure 2-14 4KEpC MDU Pipeline Flow During a Multiply Accumulate Operation

2.6.3 Divide(4KEp™ Core)

Divide operations also implement a simple non-restoring algorithm. This algorithm works only for positive oper
hence the first cycle of the MMDU stage is used to negate the rs operand (RS Adjust) if needed. Note that this cyc
executed even if negation is not needed. The next 32 cycle (3-34) executes an interactive add/subtract-shift fun

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the remainde
that one or both of these cycles are skipped if they are not needed. The rule is, if both operands were positive
is an unsigned division; both of the sign adjust cycles are skipped. If thers operand was negative, one of the sign adju
cycles is skipped. If only thers operand was negative, none of the sign adjust cycles are skipped. Register writeba
HI and LO are done in the A stage.

Figure 2-15 shows the pipeline flow for a divide operation. The repeat rate is either 34, 35 or 36 cycles (depend
how many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide is in th
MMDU stage.

Add/sub-shift HI/LO Write

E-Stage MMDU-Stage AMDU-Stage

Reg WR

WMDU-Stage

Clock 1 2-33 34 35

Add/Subtract Shift

E Stage MMDU Stage MMDU Stage MMDU Stage

HI/LO Write

AMDU Stage

Accumulate/HIAccumulate/LO

Clock 1 2-33 34 35 36

WMDU Stage

37
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 23

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

ic
truction

being
re

After
) or the

branch
OP

m the
 in M
ld take
ted.
Figure 2-15 4KEp™ MDU Pipeline Flow During a Divide (DIV) Operation

2.7 Branch Delay

The pipeline has a branch delay of one cycle. The one-cycle branch delay is a result of the branch decision log
operating during the E pipeline stage. This allows the branch target address to be used in the I stage of the ins
following 2 cycles after the branch instruction. By executing the 1st instruction following the branch instruction
sequentially before switching to the branch target, the intervening branch delay slot is utilized. This avoids bubbles
injected into the pipeline on branch instructions. Both the address calculation and the branch condition check a
performed in the E stage.

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay slot.
the branch decision is made, the processor continues with the fetch of either the branch path (for a taken branch
fall-through path (for the non-taken branch).

The branch delay means that the instruction immediately following a branch is always executed, regardless of the
direction. If no useful instruction can be placed after the branch, then the compiler or assembler must insert a N
instruction in the delay slot.

Figure 2-16 illustrates the branch delay.

Figure 2-16 IU Pipeline Branch Delay

2.8 Data Bypassing

Most MIPS32 instructions use one or two register values as source operands. These operands are fetched fro
register file in the first part of E stage. The ALU straddles the E to M boundary, and can present the result early
stage. The result is not written to the register file before the W stage however. If no precautions were made, it wou
3 cycles before the result was available for the following instructions. To avoid this, data bypassing is implemen

RS Adjust

E Stage MMDU MMDU MMDU MMDU

Sign Adjust 1Add/Subtract

Clock 1 2 3-34 35 36

AMDU

37

HI/LO WriteSign Adjust 2

WMDU

38

One Cycle

Jump Target Instruction

Delay Slot Instruction

One Clock
Branch
Delay

One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

I E M A W

I E M A

Jump or Branch
24 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.8 Data Bypassing

f a
 not
d ports.

 is

ter the
diately
ction
Between the register file and the ALU a data bypass multiplexer is placed on both operands (seeFigure 2-17 on page
25). This enables the 4KE core to forward data from a preceding instruction whose target is a source register o
following instruction. An M to E bypass and an A to E bypass feed the bypass multiplexers. A W to E bypass is
needed, as the register file is capable of making an internal bypass of Rd write data directly to the Rs and Rt rea

Figure 2-17 IU Pipeline Data bypass

Figure 2-18 on page 25shows the data bypass for an Add1 instruction followed by a Sub2 and another Add3 instruction.
The Sub2 instruction uses the output from the Add1 instruction as one of the operands, and thus the M to E bypass
used. The following Add3 uses the result from both the first Add1 instruction and the Sub2 instruction. Since the Add1
data is now in A stage, the A to E bypass is used, and the M to E bypass is used to bypass the Sub2 data to the Add2
instruction.

Figure 2-18 IU Pipeline M to E bypass

2.8.1 Load Delay

Load delay refers to the fact, that data fetched by a load instruction is not available in the integer pipeline until af
load aligner in A stage. All instructions need the source operands available in the E stage. An instruction imme
following a load instruction will, if it has the same source register as was the target of the load, cause an instru
interlock pipeline slip in the E stage (seeSection 2.12, "Instruction Interlocks" on page 29). If an instruction following
the load by 1 or 2 cycles uses the data from the load, the A to E bypass (seeFigure 2-17) serves to reduce or avoid stall
cycles. An instruction flow of this is shown inFigure 2-19.

Bypass
multiplexers

E stage M stage A stage W stageI stage

Load data, HI/LO Data
or CP0 data

A to E bypass

M to E bypass

Instruction
ALU

M stage

ALU

E stageReg File

Rs Addr

Rt Addr
Rs Read

Rt Read
Rd Write

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

R3=R2+R1
E M A W

I E M A W

I E M A

ADD1

R4=R3-R7

SUB2

R5=R3+R4

ADD3

I

A to E bypassM to E bypass

M to E bypass
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 25

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

d
peline

ng the

for each
d
. If the
rface:

 same

gnals
to the
Figure 2-19 IU Pipeline A to E Data bypass

2.8.2 Move from HI/LO and CP0 Delay

As indicated inFigure 2-17, not only load data, but also data moved from the HI or LO registers (MFHI/MFLO) an
data moved from CP0 (MFC0) enters the IU-Pipeline in the A stage. That is, data is not available in the integer pi
until early in the A stage. The A to E bypass is available for this data. But as for Loads, an instruction following
immediately after one of these move instructions must be paused for one cycle if the target of the move is amo
sources of that following instruction. This then causes an interlock slip in the E stage (seeSection 2.12, "Instruction
Interlocks" on page 29). An interlock slip after a MFHI is illustrated inFigure 2-20.

Figure 2-20 IU Pipeline Slip after a MFHI

2.9 Coprocessor 2 instructions

If a coprocessor 2 is attached to the 4KE core, a number of transactions has to take place on the CP2 Interface,
coprocessor 2 instruction. First of all if the CU[2] bit in the CP0Statusregister is not set, then no coprocessor 2 relate
instruction will start a transaction on the CP2 Interface. Rather a Coprocessor Unusable exception will signaled
CU[2] bit is set, and a coprocessor 2 instruction is fetched, the following transactions will occur on the CP2 Inte

1. The Instruction is presented on the instructions bus in E-stage. The coprocessor 2 can do a decode in the
cycle.

2. The Instruction is validated from the core in M-stage. From this point the core will accept control and data si
back from coprocessor 2. All control and data signals from the coprocessor 2 is captured on input latches
core.

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

I E M A W

I E M A

Load Instruction

Consumer of Load Data Instruction

Data bypass from A to E

One Clock
Load Delay

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

E M A WE (slip)I

MFHI (to R3)

ADD (R4=R3+R5)

Data bypass from A to E
26 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.10 Interlock Handling

roceed
n all I,

e.

essor is

sor 2

 A-stage
and

nch
branch
has to
ons
2
e

lips,

ptions
3. If all the expected control and data signals was presented to the core in the previous M-stage, the core will p
executing the A-stage. If some return information is missing, the A-stage will not advance and cause a slip o
E and M-stage, seeSection 2.11, "Slip Conditions" on page 28.
If this instruction involved sending data from the core to the coprocessor 2, then this data is send in A-stag

4. The instruction completion is signaled to the coprocessor 2 in the W-stage. Potential data from the coproc
written in the register file.

Figure 2-21 on page 27Show the timing relationship between the 4KE core and the coprocessor 2 for all coproces
instruction.

Figure 2-21 Coprocessor 2 Interface Transactions

As can be seen all control and data from the coprocessor must occur in the M-stage. If this is not the case, the
will start slipping in the following cycle, and thus stall the I, E, M and A pipeline stages; but if all expected control
data is available in the M-stage, a Coprocessor 2 instructions can execute with no stalls on the pipeline.

There is only one exception to this, and that is the Branch on Coprocessor conditions (BC2) instruction. All bra
instructions, including the regular BEQ, BNE... etc. must be resolved in E-stage. The 4KE core does not have
prediction logic, and thus the target address must be available before the end of E-stage. The BC2 instruction
follow the same protocol as all other coprocessor 2 instructions on the CP2 Interface. All core interface operati
belonging to the E, M and A stages will have to occur in the E-stage for BC2 instructions. This means that a BC
instructions always slips for a minimum of 2 cycles in E-stage. Any delay in return of branch information from th
Coprocessor 2 will add to the number of slip cycles. All other Coprocessor 2 instructions can operate without s
provided that all control and data information from the Coprocessor 2 is transferred in the M-stage.

2.10 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interru
handled entirely in hardware, such as cache misses, are referred to asinterlocks. At each cycle, interlock conditions are
checked for all active instructions.

Table 2-4 lists the types of pipeline interlocks for the 4KE processor cores.

One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

ToData CompleteValidate inst.Instrucion

COP2 inst.

Core to CP2
info.

Control &
FromData

CP2 to Core
info.

Ready

Decode and
setup valid

Core internal
operations

Get ToData
from memory

Capture
Control &
FromData

Fetch
instrucion

Get ready for
new inst.

CP2 internal
operations

Decode & get
FromData

See
Valid

Capture
ToData

Complete
instruction
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 27

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

opagate

ormally
bubble
In general, MIPS processors support two types of hardware interlocks:

• Stalls, which are resolved by halting the pipeline

• Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the 4KE processor core, all interlocks are handled as slips.

2.11 Slip Conditions

On every clock internal logic determines whether each pipe stage is allowed to advance. These slip conditions pr
backwards down the pipe. For example, if the M stage does not advance, neither does the E or I stage.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advances n
during slips. This resolves the conflict when the slip was caused by a missing result. NOPs are inserted into the
in the pipeline.Figure 2-22 on page 29 shows an instruction cache miss.

Table 2-4 Pipeline Interlocks

Interlock Type Sources Slip Stage

ITLB Miss Instruction TLB I Stage

ICache Miss Instruction cache E Stage

Instruction

Producer-consumer hazards E/M Stage

Hardware Dependencies (MDU/TLB)
E Stage

BC2 waiting for COP2 Condition Check

DTLB Miss Data TLB M Stage

Data Cache Miss

Load that misses in data cache

A Stage

Multi-cycle cache Op

Sync

Store when write thru buffer full

EJTAG breakpoint on store

VA match needing data value comparison

Store hitting in fill buffer

Coprocessor 2 completion slip Coprocessor 2 control and/or data delay
from coprocessor A Stage
28 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.12 Instruction Interlocks

che
 and
ances

(3 and
sed to

model,
ailable.
.

Figure 2-22 Instruction Cache Miss Slip

Figure 2-22 on page 29 shows a diagram of a two-cycle slip. In the first clock cycle, the pipeline is full and the ca
miss is detected. Instruction I0 is in the A stage, instruction I1 is in the M stage, instruction I2 is in the E stage,
instruction I3 is in the I stage. The cache miss occurs in clock 2 when the I4 instruction fetch is attempted. I4 adv
to the E-stage and waits for the instruction to be fetched from main memory. In this example it takes two clocks
4) to fetch the I4 instruction from memory. Once the cache miss is resolved in clock 4 and the instruction is bypas
the E stage, the pipeline is restarted, causing the I4 instruction to finally execute it’s E-stage operations.

2.12 Instruction Interlocks

Most instructions can be issued at a rate of one per clock cycle. In order to adhere to the sequential programming
the issue of an instruction must sometimes be delayed. This to ensure that the result of a prior instruction is av
Table 2-5 details the instruction interactions that prevent an instruction from advancing in the processor pipeline

Table 2-5 Instruction Interlocks

Instruction Interlocks

First Instruction Second Instruction
Issue Delay (in
Clock Cycles) Slip Stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage

MFC0 Consumer of destination
register 1 E stage

MULTx/MADDx/MSUBx

(4KEc and 4KEm cores)

16bx32b

MFLO/MFHI

0

32bx32b 1 M stage

MUL
(4KEc and 4KEm cores)

16bx32b
Consumer of target data

2 E stage

32bx32b 3 E stage

1 Cache miss detected

1 2

00

E

M I1 I2 I3

A

I

0I3I0 I1 I2

I4I4I2 I3 I4

I5I5I3 I4 I5

3 Execute E-stage

Stage

I4

0

I5

I6

3

Clock 1 2 3 4 5 6

2 Critical word received
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 29

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

ch
. These

re. As
inate
hey are

uch an
2.13 Hazards

In general, the 4KE core ensures that instructions are executed following a fully sequential program model. Ea
instruction in the program sees the results of the previous instruction. There are some deviations to this model
deviations are referred to ashazards.

Prior to Release 2 of the MIPS32™ Architecture, hazards (primarily CP0 hazards) were relegated to
implementation-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an
insufficient and error-prone practice that must be addressed with a firm compact between hardware and softwa
such, new instructions have been added to Release 2 of the architecture which act as explicit barriers that elim
hazards. To the extent that it was possible to do so, the new instructions have been added in such a way that t
backward-compatible with existing MIPS processors.

2.13.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. S
operation remained a hazard, and is addressed by the capabilities of Release 2.

MUL
(4KEc and 4KEm cores)

16bx32b
Non-Consumer of target data

1 E stage

32bx32b 2 E stage

MFHI/MFLO Consumer of target data 1 E stage

MULTx/MADDx/MSUBx
(4KEc and 4KEm cores)

16bx32b
MULT/MUL/MADD/MSUB
MTHI/MTLO/DIV

0[1] E stage

32bx32b 1[1] E stage

DIV
MUL/MULTx/MADDx/
MSUBx/MTHI/MTLO/
MFHI/MFLO/DIV

Until DIV
completes E stage

MULT/MUL/MADD/MSUB/MTHI/MTLO/
MFHI/MFLO/DIV

(4KEp core)

MULT/MUL/MADD/MSUB
/MTHI/MTLO/MFHI/MFL
O/DIV

Until 1st MDU op
completes E stage

MUL

(4KEp core) Any Instruction Until MUL
completes E stage

MFC0/MFC2/CFC2 Consumer of target data 1 E stage

TLBWR/TLBWI Load/Store/PREF/CACHE/
COP0 op

2 E stage

TLBR 1 E stage

Table 2-5 Instruction Interlocks

Instruction Interlocks

First Instruction Second Instruction
Issue Delay (in
Clock Cycles) Slip Stage
30 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.13 Hazards

truction.
In privileged software, there are two different types of hazards:execution hazards andinstruction hazards. Both are
defined below.

2.13.1.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another ins
Table 2-6 lists execution hazards.

Table 2-6 Execution Hazards

Producer → Consumer Hazard On Spacing
(Instructions)

TLBWR, TLBWI →
TLBP, TLBR TLB entry 0

Load/store using new TLB entry TLB entry 0

MTC0 → Load/store affected by new state WatchHi
WatchLo 0

LL → MFC0 LLAddr 1

MTC0 → Coprocessor instruction execution depends on the new value of
StatusCU

StatusCU 1

MTC0 → ERET
EPC

DEPC
ErrorEPC

1

MTC0 → ERET Status 0

MTC0, EI, DI → Interrupted Instruction StatusIE 1

MTC0 → Interrupted Instruction CauseIP 3

TLBR → MFC0

EntryHi,
EntryLo0,
EntryLo1,
PageMask

0

TLBP → MFC0 Index 0

MTC0 →
TLBR
TLBWI
TLBWR

EntryHi 1

MTC0 → TLBP
Load/store affected by new state EntryHiASID 1

MTC0 → TLBWI
TLBWR

EntryLo0
EntryLo1 0

MTC0 → TLBWI
TLBWR Index 1

MTC0 → RDPGPR
WRPGPR SRSCtlPSS 1

MTC0 → Instruction not seeing a Timer Interrupt

Compare
update that

clears Timer
Interrupt

41

MTC0 → Instruction affected by change Any other
CP0 register 2
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 31

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

nother

s.

e with
.

e
 JR.HB
R.HB
2.13.1.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of a
instruction.Table 2-7 lists instruction hazards.

2.13.2 Instruction Listing

Table 2-8 lists the instructions designed to eliminate hazards. See the document titledMIPS32™ Architecture for
Programmers Volume II: The MIPS32™ Instruction Set(MD00086) for a more detailed description of these instruction

2.13.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for
compatibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatibl
both Release 1 and Release 2 implementations. See the EHB instruction description for additional information

The JALR.HB and JR.HB instructions are encoding using bit 10 of thehint field of the JALR and JR instructions. These
encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date th
MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
instructions can be included in existing software for backward and forward compatibility. See the JALR.HB and J
instructions for additional information.

1. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic between theSI_TimerIntoutput and the external
logic which feedsSI_TimerIntback into one of theSI_Intinputs, or a function of the method for handlingSI_TimerIntin an external interrupt controller.

Table 2-7 Instruction Hazards

Producer → Consumer Hazard
On

Spacing
(Instructions)

TLBWR, TLBWI → Instruction fetch using new TLB entry TLB entry 3

MTC0 → Instruction fetch seeing the new value (including a change to ERL
followed by an instruction fetch from the useg segment) Status

MTC0 → Instruction fetch seeing the new value EntryHiASID 3

MTC0 → Instruction fetch seeing the new value WatchHi
WatchLo 2

Instructionstream
write via CACHE → Instruction fetch seeing the new instruction stream Cache

entries 3

Instructionstream
write via store → Instruction fetch seeing the new instruction stream Cache

entries
System-depend

ent1

1. This value depends on how long it takes for the store value to propagate through the system.

Table 2-8 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write
32 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.13 Hazards

ecause
 on

or
er of the
e table

ce one
e
R.HB
The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen b
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running
processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

2.13.3 Eliminating Hazards

The Spacing column shown inTable 2-6andTable 2-7indicates the number of unrelated instructions (such as NOPs
SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and consum
hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entries in th
that are listed as 0 are traditional MIPS hazards which are not hazards on the 4KE core.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazards is to pla
of the instructions listed inTable 2-8 between the producer and consumer of the hazard. Execution hazards can b
removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the JAL
or JR.HB instructions, in conjunction with the SYNCI instruction.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 33

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

nit and
 cores

t to the
ion is a
s active
(4KEc
l.

6
LB

ation

s into
of the

es the
Chapter 3

Memory Management of the 4KE™ Core

The 4KE™ processor core includes a Memory Management Unit (MMU) that interfaces between the execution u
the cache controller. The 4KEc core contains a Translation Lookaside Buffer (TLB), while the 4KEm and 4KEp
implement a simpler Fixed Mapping (FM) style MMU.

This chapter contains the following sections:

• Section 3.1, "Introduction"

• Section 3.2, "Modes of Operation"

• Section 3.3, "Translation Lookaside Buffer (4KEc™ Core Only)"

• Section 3.4, "Virtual-to-Physical Address Translation (4KEc™ Core)"

• Section 3.5, "Fixed Mapping MMU (4KEm™ & 4KEp™ Cores)"

• Section 3.6, "System Control Coprocessor"

3.1 Introduction

The MMU in a 4KE processor core will translate any virtual address to a physical address before a request is sen
cache controllers for tag comparison or to the bus interface unit for an external memory reference. This translat
very useful feature for operating systems when trying to manage physical memory to accommodate multiple task
in the same memory, possibly on the same virtual address but of course in different locations in physical memory
core only). Other features handled by the MMU are protection of memory areas and defining the cache protoco

In the 4KEc processor core, the MMU is TLB based. The TLB consists of three address translation buffers: a 1
dual-entry fully associative Joint TLB (JTLB), a 4-entry instruction micro TLB (ITLB), and a 4-entry data micro T
(DTLB). When an address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed first. If the transl
is not found in the micro TLB, the JTLB is accessed. If there is a miss in the JTLB, an exception is taken.

In the 4KEm and 4KEp processor cores, the MMU is based on a simple algorithm to translate virtual addresse
physical addresses via a Fixed Mapping (FM) mechanism. These translations are different for various regions
virtual address space (useg/kuseg, kseg0, kseg1, kseg2/3).

Figure 3-1 shows how the memory management unit interacts with cache accesses in the 4KEc core, whileFigure 3-2
shows the equivalent for the 4KEm and 4KEp cores. In the 4KEm and 4KEp cores, note that the FM MMU replac
ITLB, DTLB and JTLB found in the 4KEc core.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 34

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation
Figure 3-1 Address Translation During a Cache Access in the 4KEc™ core

Figure 3-2 Address Translation During a Cache Access in the 4KEm™ and 4KEp™ Cores

3.2 Modes of Operation

A 4KE processor core supports three modes of operation:

Instruction
Virtual Address
(IVA)

Data
Virtual Address
(DVA)

JTLB

ITLB

Instruction
Cache
RAM

DTLB

Data
Cache
RAM

IVA Entry

Entry
Data
Physical
Address
(DPA)

Instruction
Physical
Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data
Hit/Miss

Instruction
Hit/Miss

Instruction
Virtual Address
(IVA)

Data
Virtual Address
(DVA)

FM MMU

Instruction
Cache
RAM

Data
Cache
RAM

Data
Physical
Address
(DPA)

Instruction
Physical
Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data
Hit/Miss

Instruction
Hit/Miss
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 35

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

and
sed for

odes

re has
the virtual
ode,

e address
segment
allowing
• User mode

• Kernel mode

• Debug mode

User mode is most often used for application programs. Kernel mode is typically used for handling exceptions
privileged operating system functions, including CP0 management and I/O device accesses. Debug mode is u
software debugging and most likely occurs within a software development tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.

3.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of operation.Figure 3-3 on page 37 shows the
segmentation for the 4 GByte (232bytes) virtual memory space addressed by a 32-bit virtual address, for the three m
of operation.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, softwa
access to the entire address space, as well as all CP0 registers. User mode accesses are limited to a subset of
address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from accessing CP0 functions. In User m
virtual addresses 0x8000_0000 to 0xFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the sam
space and CP0 registers as for Kernel mode. In addition, while in Debug mode the core has access to the debug
dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned on or off,
full access to the entire kseg3 in Debug mode, if so desired.
36 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

ns

use the

lations

he CP0
Figure 3-3 4KE™ processor core Virtual Memory Map.

Each of the segments shown inFigure 3-3 on page 37are either mapped or unmapped. The following two sub-sectio
explain the distinction. Then sectionsSection 3.2.2, "User Mode", Section 3.2.3, "Kernel Mode" andSection 3.2.4,
"Debug Mode" specify which segments are actually mapped and unmapped.

3.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB (4KEc core) or the FM (4KEm and 4KEp cores) to translate from
virtual-to-physical addresses. Especially after reset, it is important to have unmapped memory segments, beca
TLB is not yet programmed to perform the translation.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the trans
the FM provides for the 4KEm and 4KEp cores, but we will still make the distinction.

Except for kseg0, unmapped segments are always uncached. The cacheability of kseg0 is set in the K0 field of t
register Config (seeSection 5.2.21, "Config Register (CP0 Register 16, Select 0)").

useg kuseg kuseg

kseg0

kseg1

kseg2

kseg3

kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 37

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

tion is

. The

le.

ddresses
3.2.1.2 Mapped Segments

A mapped segment does use the TLB (4KEc core) or the FM (4KEm and 4KEp cores) to translate from
virtual-to-physical addresses.

For the 4KEc core, the translation of mapped segments is handled on a per-page basis. Included in this transla
information defining whether the page is cacheable or not, and the protection attributes that apply to the page.

For the 4KEm and 4KEp cores, the mapped segments have a fixed translation from virtual to physical address
cacheability of the segment is defined in the CP0 register Config, fields K23 and KU (seeSection 5.2.21, "Config
Register (CP0 Register 16, Select 0)"). Write protection of segments is not possible during FM translation.

3.2.2 User Mode

In user mode, a single 2 GByte (231bytes) uniform virtual address space called the user segment (useg) is availab
Figure 3-4 on page 38 shows the location of user mode virtual address space.

Figure 3-4 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. Accesses to all other a
cause an address error exception.

The processor operates in User mode when theStatus register contains the following bit values:

• UM = 1

• EXL = 0

• ERL = 0

In addition to the above values, the DM bit in theDebug register must be 0.

Table 3-1 lists the characteristics of the useg User mode segments.

0x0000_0000

0x8000_0000

0x7FFF_FFFF

0xFFFF_FFFF

32 bit

Address
Error

2GB
Mapped useg
38 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

 only
t bit set

c
efore
a

e end
uction
.

ss, as
All valid user mode virtual addresses have their most significant bit cleared to 0, indicating that user mode can
access the lower half of the virtual memory map. Any attempt to reference an address with the most significan
while in user mode causes an address error exception.

The system maps all references touseg through the TLB (4KEc core) or FM (4KEm and 4KEp cores). For the 4KE
core, the virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address b
translation. Also for the 4KEc core, bit settings within the TLB entry for the page determine the cacheability of
reference. For the 4KEm and 4KEp cores, the cacheability is set via the KU field of the CP0 Config register.

3.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit in theDebugregister is 0 and theStatusregister contains one
or more of the following values:

• UM = 0

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At th
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instr
jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual addre
shown inFigure 3-5 on page 40. Also,Table 3-2 lists the characteristics of the Kernel mode segments.

Table 3-1 User Mode Segments

Address
Bit Value

Status Register

Segment

Name Address Range Segment Size

Bit Value

EXL ERL UM

32-bit

A(31) = 0
0 0 1 useg

0x0000_0000 -->

0x7FFF_FFFF

2 GByte
(231 bytes)
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 39

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core
Figure 3-5 Kernel Mode Virtual Address Space

Table 3-2 Kernel Mode Segments

Address Bit
Values

Status Register Is
One of These Values

Segment
Name Address Range

Segment
SizeUM EXL ERL

A(31) = 0

(UM = 0

or

EXL = 1

or

ERL = 1)

and

DM = 0

kuseg
0x0000_0000

through
0x7FFF_FFFF

2 GBytes
(231 bytes)

A(31:29) = 1002 kseg0
0x8000_0000

through
0x9FFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1012 kseg1
0xA000_0000

through
0xBFFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1102 kseg2
0xC000_0000

through
0xDFFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1112 kseg3
0xE000_0000

through
0xFFFF_FFFF

512 MBytes
(229 bytes)

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

kseg2

kseg3

Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF
40 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

dress

t ASID

ce.
e ASID

F.
he virtual

mory (or

e

t
 the TLB.

 areas,
F_FFFF.
3.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual ad
space is selected and covers the full 231bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF. For the 4KEc core, the virtual address is extended with the contents of the 8-bi
field to form a unique virtual address.

When ERL = 1 in theStatusregister, the user address region becomes a 231-byte unmapped and uncached address spa
While in this setting, the kuseg virtual address maps directly to the same physical address, and does not include th
field.

3.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address space
is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 - 0x9FFF_FFF
References to kseg0 are unmapped; the physical address selected is defined by subtracting 0x8000_0000 from t
address. The K0 field of theConfig register controls cacheability.

3.2.3.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual address
space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical me
memory-mapped I/O device registers) are accessed directly.

3.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM = 0, ERL = 1, or EXL = 1 in theStatus register, and DM = 0 in theDebug register, and the
most-significant three bits of the 32-bit virtual address are 1102, 32-bit kseg2 virtual address space is selected. In th
4KEm and 4KEp processor cores, this 229-byte (512-MByte) kernel virtual space is located at physical addresses
0xC000_0000 - 0xDFFF_FFFF. In the 4KEc processor core, this space is mapped through the TLB.

3.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112 , the kseg3 virtual address
space is selected. In the 4KEm and 4KEp processor cores, this 229-byte (512-MByte) kernel virtual space is located a
physical addresses 0xE000_0000 - 0xFFFF_FFFF. In the 4KEc processor core, this space is mapped through

3.2.4 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped
except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range 0xFF20_0000 to 0xFF3
The layout is shown inFigure 3-6 on page 42.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 41

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

obe

r debug
ith the

ich allows

hown in
Figure 3-6 Debug Mode Virtual Address Space

The dseg is sub-divided into the dmseg segment at 0xFF20_0000 to 0xFF2F_FFFF which is used when the pr
services the memory segment, and the drseg segment at 0xFF30_0000 to 0xFF3F_FFFF which is used when
memory-mapped debug registers are accessed. The subdivision and attributes for the segments are shown inTable 3-3.

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-ente
mode via a debug mode exception. This includes accesses usually causing a TLB exception (4KEc core only), w
result that such accesses are not handled by the usual memory management routines.

The unmapped kseg0 and kseg1 segments from kernel mode address space are available from debug mode, wh
the debug handler to be executed from uncached and unmapped memory.

3.2.4.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of CPU access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is determined as s
Table 3-4

Table 3-3 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment
Name

Sub-Segment
Name Virtual Address Generates Physical Address

Cache
Attribute

dseg

dmseg

0xFF20_0000

through

0xFF2F_FFFF

dmseg maps to addresses
0x0_0000 - 0xF_FFFF in EJTAG

probe memory space.

drseg maps to the breakpoint
registers 0x0_0000 - 0xF_FFFF

Uncached

drseg

0xFF30_0000

through

0xFF3F_FFFF

Table 3-4 CPU Access to drseg Address Range

Transaction
LSNM bit in Debug

register Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care
drseg, see comments below

Load / Store 0

0x0000_0000

0xFF20_0000

0xFF40_0000
0xFFFF_FFFF

dseg

kseg1

kseg0 Unmapped

Mapped if mapped in Kernel Mode
42 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.3 Translation Lookaside Buffer (4KEc™ Core Only)

egisters
dictable,

ssor is

 the table

ebug
If such
 there will
een the

he TLB

nding
hysical
ASID
oth

from
size is
Byte.
Debug software is expected to read the debug control register (DCR) to determine which other memory mapped r
exist in drseg. The value returned in response to a read of any unimplemented memory mapped register is unpre
and writes are ignored to any unimplemented register in the drseg. Refer toChapter 9, “EJTAG Debug Support in the
4KE™ Core,” for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the proce
undefined for other transaction sizes.

3.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of CPU access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is determined by
shown inTable 3-5

.

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. D
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg.
a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race betw
debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

3.3 Translation Lookaside Buffer (4KEc™ Core Only)

The following subsections discuss the TLB memory management scheme used in the 4KEc processor core. T
consists of one joint and two micro address translation buffers:

• 16 dual-entry fully associative Joint TLB (JTLB)

• 4-entry fully associative Instruction micro TLB (ITLB)

• 4-entry fully associative Data micro TLB (DTLB)

3.3.1 Joint TLB

The 4KEc core implements a 16 dual-entry, fully associative Joint TLB that maps 32 virtual pages to their correspo
physical addresses. The purpose of the TLB is to translate virtual addresses and their corresponding ASID into a p
memory address. The translation is performed by comparing the upper bits of the virtual address (along with the
bits) against each of the entries in thetagportion of the JTLB structure. Because this structure is used to translate b
instruction and data virtual addresses, it is referred to as a “joint” TLB.

The JTLB is organized as 16 pairs of even and odd entries containing descriptions of pages that range in size
4-KBytes (or 1-KByte) to 256-MBytes into the 4-GByte physical address space. By default, the minimum page
normally 4-KBytes on the 4KEc core; as a build-time option, it is possible to specify a minimum page size of 1-K

Table 3-5 CPU Access to dmseg Address Range

Transaction
ProbEn bit in
DCR register

LSNM bit in
Debug register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care
dmseg

Load / Store 1 0

Fetch 0 Don’t care
See comments below

Load / Store 0 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 43

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

ating in
age-pair
en-odd

gure
The JTLB is organized in pairs of page entries to minimize its overall size. Each virtualtag entry corresponds to two
physical data entries, an even page entry and an odd page entry. The highest order virtual address bit not particip
the tag comparison is used to determine which of the two data entries is used. Since page size can vary on a p
basis, the determination of which address bits participate in the comparison and which bit is used to make the ev
selection must be done dynamically during the TLB lookup.

Figure 3-7 on page 44shows the contents of one of the 16 dual-entries in the JTLB. The bit range indication in the fi
serves to clarify which address bits are (or may be) affected during the translation process.

Figure 3-7 JTLB Entry (Tag and Data)

Table 3-6 andTable 3-7 explain each of the fields in a JTLB entry.

Table 3-6 TLB Tag Entry Fields

Field Name Description

PageMask[28:11]

Page Mask Value. The Page Mask defines the page size by masking the
appropriate VPN2 bits from being involved in a comparison. It is also used to
determine which address bit is used to make the even-odd page (PFN0-PFN1)
determination. See the table below.

The PageMask column above shows all the legal values for PageMask. Because
each pair of bits can only have the same value, the physical entry in the JTLB
will only save a compressed version of the PageMask using only 8 bits. This is
however transparent to software, which will always work with a 18 bit field

PageMask[28:11]

D0

G ASID[7:0]

PFN0[31:12] or [29:10] C0[2:0]

D1PFN1[31:12] or [29:10] C1[2:0]

VPN2[31:13], VPN2X[12:11]

V0

V1

Tag Entry

Data Entries

19 1 8

20 3 1 1

G

PageMask Page Size Even/Odd Bank
Select Bit

00_0000_0000_0000_0000 1KB VAddr[10]

00_0000_0000_0000_0011 4KB VAddr[12]

00_0000_0000_0000_1111 16KB VAddr[14]

00_0000_0000_0011_1111 64KB VAddr[16]

00_0000_0000_1111_1111 256KB VAddr[18]

00_0000_0011_1111_1111 1MB VAddr[20]

00_0000_1111_1111_1111 4MB VAddr[22]

00_0011_1111_1111_1111 16MB VAddr[24]

00_1111_1111_1111_1111 64MB VAddr[26]

11_1111_1111_1111_1111 256MB VAddr[28]
44 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.3 Translation Lookaside Buffer (4KEc™ Core Only)

 the

In order to fill an entry in the JTLB, software executes a TLBWI or TLBWR instruction (SeeSection 3.4.3, "TLB
Instructions" on page 50). Prior to invoking one of these instructions, several CP0 registers must be updated with
information to be written to a TLB entry:

VPN2[31:13]

Virtual Page Number divided by 2. This field contains the upper bits of the
virtual page number. Because it represents a pair of TLB pages, it is divided by
2. Bits 31:25 are always included in the TLB lookup comparison. Bits 24:13
are included depending on the page size, defined by PageMask.

VPN2X[12:11] Extension to the VPN2 field to support 1KB pages.

G Global Bit. When set, indicates that this entry is global to all processes and/or
threads and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is
associated with.

Table 3-7 TLB Data Entry Fields

Field Name Description

PFN0([31:12] or [29:10]),
PFN1([31:12] or [29:10])

Physical Frame Number. Defines the upper bits of the physical address.

The [29:10] range illustrates that if 1Kbytes page granularity is enabled,
the PFN is shifted to the right, before being appended to the untranslated
part of the virtual address. In this mode the upper two physical address bits
are not covered by PFN but forced to zero.

For page sizes larger than 4 KBytes, only a subset of these bits is actually
used.

C0[2:0],
C1[2:0]

Cacheability. Contains an encoded value of the cacheability attributes and
determines whether the page should be placed in the cache or not. The field
is encoded as follows:

D0,
D1

“Dirty” or Write-enable Bit. Indicates that the page has been written
and/or is writable. If this bit is set, stores to the page are permitted. If the
bit is cleared, stores to the page cause a TLB Modified exception.

V0,
V1

Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping
are valid. If this bit is set, accesses to the page are permitted. If the bit is
cleared, accesses to the page cause a TLB Invalid exception.

Table 3-6 TLB Tag Entry Fields (Continued)

Field Name Description

C[2:0] Coherency Attribute

000
Cacheable, noncoherent, write-through, no
write-allocate

001
Cacheable, noncoherent, write-through,
write-allocate

010 Uncached

011
Cacheable, noncoherent, write-back,
write-allocate

100 Maps to entry 011b*

101 Maps to entry 011b*

110 Maps to entry 011b*

111 Maps to entry 010b*

Note: * These mappings are not used on the 4KE processor
cores but do have meaning in other MIPS Technologies
implementations. Refer to the MIPS32 specification for
more information.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 45

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

”

istence
in the

ITLB

e ITLB,
opied
B miss

han is

 the
cycle.
penalty

 with the
e entry,

re

ing a
• PageMask is set in the CP0PageMask register.

• VPN2, VPN2X, and ASID are set in the CP0EntryHi register.

• PFN0, C0, D0, V0 and G bits are set in the CP0EntryLo0 register.

• PFN1, C1, D1, V1 and G bits are set in the CP0EntryLo1 register.

Note that the global bit “G” is part of bothEntryLo0andEntryLo1. The resulting “G” bit in the JTLB entry is the logical
AND between the two fields inEntryLo0andEntryLo1. Please refer toChapter 5, “CP0 Registers of the 4KE™ Core,
for further details.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The ex
of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value is stored
EntryHi register and is compared to the ASID value of each entry.

3.3.2 Instruction TLB

The ITLB is a small 4-entry, fully associative TLB dedicated to perform translations for the instruction stream. The
only maps 4-Kbyte pages/sub-pages or 1-Kbyte pages/sub-pages ifConfig3SP=1 andPageGrainESP=1.

The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated by th
the JTLB is accessed trying to translate it in the following clock cycle. If successful, the translation information is c
into the ITLB. The ITLB is then re-accessed and the address will be successfully translated. This results in an ITL
penalty of at least 2 cycles. If the JTLB is busy with other operations, it may take additional cycles.

3.3.3 Data TLB

The DTLB is a small 4-entry, fully associative TLB which provides a faster translation for Load/Store addresses t
possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages or 1-Kbyte pages/sub-pages ifConfig3SP=1 and
PageGrainESP=1.

Like the ITLB, the DTLB is managed by hardware and is transparent to software. Unlike the ITLB, an access to
DTLB starts a parallel access to the JTLB. If there is a DTLB miss and a JTLB hit, the DTLB can be reloaded that
The DTLB is then re-accessed and the translation will be successful. This parallel access reduces the DTLB miss
to 1 cycle.

3.4 Virtual-to-Physical Address Translation (4KEc™ Core)

Converting a virtual address to a physical address begins by comparing the virtual address from the processor
virtual addresses in the TLB. There is a match when the VPN of the address is the same as the VPN field of th
and either:

• The Global (G) bit of both the even and odd pages of the TLB entry are set, or

• The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TLBhit. If there is no match, a TLBmissexception is taken by the processor and softwa
is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 3-8 on page 47 shows the logical translation of a virtual address into a physical address.

In this figure the virtual address is extended with an 8-bit ASID, which reduces the frequency of TLB flushing dur
context switch. This 8-bit ASID contains the number assigned to that process and is stored in the CP0EntryHi register.
46 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.4 Virtual-to-Physical Address Translation (4KEc™ Core)

ce.

 virtual
ss
Figure 3-8 Overview of a Virtual-to-Physical Address Translation in the 4KEc™ Core

If there is a virtual address match in the TLB, the Physical Frame Number (PFN) is output from the TLB and
concatenated with theOffset, to form the physical address. TheOffsetrepresents an address within the page frame spa
As shown inFigure 3-8 on page 47, theOffset does not pass through the TLB.Figure 3-9 on page 48 shows a flow
diagram of the 4KEc core address translation process for two page sizes. The top portion of the figure shows a
address for a 4 KByte page size. The width of theOffsetis defined by the page size. The remaining 20 bits of the addre
represent the virtual page number (VPN). The bottom portion ofFigure 3-9 on page 48 shows the virtual address for a
16 MByte page size. The remaining 8 bits of the address represent the VPN.

1.Virtual address (VA) represented by
the virtual page number (VPN) is
compared with tag in TLB.

2. If there is a match, the page frame
number (PFN0 or PFN1)
representing the upper bits of the
physical address (PA) is output from

3. The Offset, which does not pass
through the TLB, is then concatenated
with the PFN.

OffsetVPNG ASID

Virtual Address

TLB
Entry

OffsetPFN

TLB

G ASID VPN2

C0 D0 V0 PFN0

PFN1C1 D1 V1

Physical Address
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 47

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

placed
arity of

from
LB
 the

 the

n, the

On the
, the

4
n and

 the
with
Figure 3-9 32-bit Virtual Address Translation

3.4.1 Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag and two data fields. If a match is found, the upper bits of the virtual address are re
with the page frame number (PFN) stored in the corresponding entry in the data array of the JTLB. The granul
JTLB mappings is defined in terms of TLB pages. The 4KEc core JTLB supports pages of different sizes ranging
1 KB to 256 MB in powers of 4. If a match is found, but the entry is invalid (i.e., the V bit in the data field is 0), a T
Invalid exception is taken.If no match occurs (TLB miss), an exception is taken and software refills the TLB from
page table resident in memory.Figure 3-10 on page 50 shows the translation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into a random entry. TheRandom
register selects which TLB entry to use on a TLBWR. This register decrements almost every cycle, wrapping to
maximum once its value is equal to theWiredregister. Thus, TLB entries below theWiredvalue cannot be replaced by
a TLBWR allowing important mappings to be preserved. In order to reduce the possibility for a livelock situatio
Randomregister includes a 10-bit LFSR that introduces a pseudo-random perturbation into the decrement.

The 4KEc core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur.
TLB write operation, the VPN2 field to be written is compared with all other entries in the TLB. If a match occurs
4KEc core takes a machine-check exception, sets the TS bit in the CP0Status register, and aborts the write operation.
For further details on exceptions, please refer toChapter 4, “Exceptions and Interrupts in the 4KE™ Core,” on page 5.
There is a hidden bit in each TLB entry that is cleared on a ColdReset. This bit is set once the TLB entry is writte
is included in the match detection. Therefore, uninitialized TLB entries will not cause a TLB shutdown.

Note: This hidden initialization bit leaves the entire JTLB invalid after a ColdReset, eliminating the need to flush
TLB. But, to be compatible with other MIPS processors, it is recommended that software initialize all TLB entries
unique tag values and V bits cleared before the first access to a mapped location.

11
Virtual address with 1M (220) 4-KByte

Virtual Address with 256 (28)16-MByte pages

8 bits = 256 pages

20 bits = 1M pages

Virtual-to-physical
translation in TLB

Bit 31 of the virtual address
selects user and kernel
address spaces.

Offset passed unchanged
to physical memory.

Virtual-to-physical
translation in TLB

Offset passed unchanged
to physical memory.

32-bit Physical Address

ASID VPN Offset

PFN0/1 Offset

TLB

TLB

ASID VPN Offset
0233132 2439

313239 012

031

8 8 24

8 20 12
48 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.4 Virtual-to-Physical Address Translation (4KEc™ Core)

regions,

to 256

hus,
ed with

age

 are

written
vides a
r, thus
3.4.2 Memory Space

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory
the 4KEc core provides two mechanisms.

3.4.2.1 Page Sizes

First, the page size can be configured, on a per entry basis, to map different page sizes ranging from 4 KByte
MByte, in multiples of 4 (optionally, the 4KEc core can also support a smaller page size of 1 KByte). The CP0PageMask
register is loaded with the desired page size, which is then entered into the TLB when a new entry is written. T
operating systems can provide special-purpose maps. For example, a typical frame buffer can be memory mapp
only one TLB entry.

The 4KEc core implements the following page sizes:

(optionally 1K), 4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M.

Software may determine which page sizes are supported by writing all ones to the CP0PageMaskregister, then reading
the value back. For additional information, seeSection 5.2.5, "PageMask Register (CP0 Register 5, Select 0)" on p
97.

To enable support of 1 KByte pages in the 4KEc core a few steps must be taken. First, check that small pages
implemented by reading the CP0ConfigSPbit. If set, small page sizes can be enabled by setting theESPbit of the CP0
PageGrainregister. SeeSection 5.2.6, "PageGrain Register (CP0 Register 5, Select 1)" on page 99for more information.

3.4.2.2 Replacement Algorithm

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be
with a new mapping, the 4KEc core provides a random replacement algorithm. However, the processor also pro
mechanism whereby a programmable number of mappings can be locked into the TLB via the CP0 Wired registe
avoiding random replacement. Please refer toSection 5.2.7, "Wired Register (CP0 Register 6, Select 0)" on page 100for
further details.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 49

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

n

Figure 3-10 TLB Address Translation Flow in the 4KE™ Processor Core

3.4.3 TLB Instructions

Table 3-8lists the 4KEc core’s TLB-related instructions. Refer toChapter 11, “4KE™ Processor Core Instructions,” o
page 242 for more information on these instructions.

Table 3-8 TLB Instructions

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

For valid address
space, see the section
describing Modes of
operation in this
chapter.

Virtual Address (Input)

VPN
and

ASID

User
Mode?

NoYes

No

Yes

No

Yes

No

No No

No

No

No

No

Yes

Yes Yes

Yes

Yes

Yes

Yes

Exception

Global

Valid

Dirty

Noncacheable

Physical Address (Output)

User
Address?

Address
Error

Unmapped
Address

kseg0/kseg1
Address

VPN
Match?

 G = 1?

 C=010
or

C=111?

 ASID
Match?

 V = 1?

 D = 1? Write?

 TLB
Modified

 TLB
Invalid

 TLB
Refill

Access
Cache

Access
Main

Memory
50 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.5 Fixed Mapping MMU (4KEm™ & 4KEp™ Cores)

an the
sical
 are

KEp

e.

own in
same
3.5 Fixed Mapping MMU (4KEm™ & 4KEp™ Cores)

The 4KEm and 4KEp cores implement a simple Fixed Mapping (FM) memory management unit that is smaller th
a full translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FM performs virtual-to-phy
address translation and provides attributes for the different memory segments. Those memory segments which
unmapped in a TLB implementation (kseg0 and kseg1) are translated identically by the FM in the 4KEm and 4
MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bits in theConfigregister.
Table 3-9 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) of theConfig register.

In the 4KEm and 4KEp cores, no translation exceptions can be taken, although address errors are still possibl
C

The FM performs a simple translation to map from virtual addresses to physical addresses. This mapping is sh
Figure 3-11 on page 52. When ERL=1, useg and kuseg become unmapped and uncached. The ERL behavior is the
as if there was a TLB. The ERL mapping is shown inFigure 3-12 on page 53.

TLBWR Translation Lookaside Buffer Write Random

Table 3-9 Cache Coherency Attributes

Config Register Fields
K23, KU, and K0 Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write-allocate

1 Cacheable, noncoherent, write-through, write-allocate

3, 4, 5, 6 Cacheable, noncoherent, write-back, write-allocate

2, 7 Uncached

Table 3-10 Cacheability of Segments with Block Address Translation

Segment
Virtual Address

Range Cacheability

useg/kuseg
0x0000_0000-

0x7FFF_FFFF

Controlled by the KU field (bits 27:25) of theConfigregister. Refer to
Table 3-9 for the encoding.

kseg0
0x8000_0000-

0x9FFF_FFFF

Controlled by the K0 field (bits 2:0) of theConfig register. SeeTable
3-9 for the encoding.

kseg1
0xA000_0000-

0xBFFF_FFFF
Always uncacheable

kseg2
0xC000_0000-

0xDFFF_FFFF

Controlled by the K23 field (bits 30:28) of theConfigregister. Refer to
Table 3-9 for the encoding.

kseg3
0xE000_0000-

0xFFFF_FFFF

Controlled by K23 field (bits 30:28) of theConfig register. Refer to
Table 3-9 for the encoding.

Table 3-8 TLB Instructions

Op Code Description of Instruction
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 51

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core
The ERL bit is usually never asserted by software. It is asserted by hardware after a Reset, SoftReset or NMI. SeeSection
4.8, "Exceptions" on page 70 for further information on exceptions.

Figure 3-11 FM Memory Map (ERL=0) in the 4KEm™ and 4KEp™ Processor Cores

useg/kuseg

useg/kuseg

Virtual Address Physical Address

kseg3

kseg2

kseg1

kseg0

kseg3

kseg2

reserved

kseg0/kseg1

0xE000_0000

0xC000_0000

0xA000_0000

0x8000_0000

0x0000_0000

0xE000_0000

0xC000_0000

0x0000_0000

0x2000_0000

0x4000_0000
52 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.6 System Control Coprocessor

pports
sters are
Figure 3-12 FM Memory Map (ERL=1) in the 4KEm™ and 4KEp™ Processor Cores

3.6 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part of the 4KE processor cores and su
memory management, address translation, exception handling, and other privileged operations. Certain CP0 regi
used to support memory management. Refer toChapter 5, “CP0 Registers of the 4KE™ Core,” on page 88 for more
information on the CP0 register set.

0xE000_0000

Physical AddressVirtual Address

kseg3

0xE000_0000

kseg3

kseg2kseg2

0xC000_00000xC000_0000

0xA000_0000

kseg1

reserved

0x8000_00000x8000_0000

kseg0

useg/kuseguseg/kuseg

0x2000_0000

0x0000_00000x0000_0000

kseg0/kseg1
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 53

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

(TLB)
normal

andler)
gram
so it can

lot, the
re must
cise

elled.
re

ns that
ith the
ar the

ctions
t

Chapter 4

Exceptions and Interrupts in the 4KE™ Core

The 4KE™ processor core receives exceptions from a number of sources, including translation lookaside buffer
misses, arithmetic overflows, I/O interrupts, and system calls. When the CPU detects one of these exceptions, the
sequence of instruction execution is suspended and the processor enters kernel mode.

In kernel mode the core disables interrupts and forces execution of a software exception processor (called a h
located at a specific address. The handler saves the context of the processor, including the contents of the pro
counter, the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved
be restored when the exception has been serviced.

When an exception occurs, the core loads theException Program Counter (EPC) register with a location where
execution can restart after the exception has been serviced. Most exceptions areprecise, which mean thatEPC can be
used to identify the instruction that caused the exception. For precise exceptions the restart location in theEPCregister
is the address of the instruction that caused the exception or, if the instruction was executing in a branch delay s
address of the branch instruction immediately preceding the delay slot. To distinguish between the two, softwa
read the BD bit in the CP0Cause register. Bus error exceptions and CP2 exceptions may be imprecise. For impre
exceptions the instruction that caused the exception can not be identified.

This chapter contains the following sections:

• Section 4.1, "Exception Conditions"

• Section 4.2, "Exception Priority"

• Section 4.3, "Interrupts"

• Section 4.4, "GPR Shadow Registers"

• Section 4.5, "Exception Vector Locations"

• Section 4.6, "General Exception Processing"

• Section 4.7, "Debug Exception Processing"

• Section 4.8, "Exceptions"

• Section 4.9, "Exception Handling and Servicing Flowcharts"

4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are canc
Accordingly, any stall conditions and any later exception conditions that may have referenced this instruction a
inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructio
follow. When this instruction reaches the W stage, the exception flag causes it to write various CP0 registers w
exception state, change the current program counter (PC) to the appropriate exception vector address, and cle
exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instru
from completing. Thus, the value in theEPC(ErrorEPCfor errors, orDEPCfor debug exceptions) is sufficient to restar
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 54

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.2 Exception Priority

ay itself

ns can
execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception m
be killed by an instruction further down the pipeline that takes an exception in a later cycle.

4.2 Exception Priority

Table 4-1lists all possible exceptions, and the relative priority of each, highest to lowest. Several of these exceptio
happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 4-1 Priority of Exceptions

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT
input, or by setting the EjtagBrk bit in theECR register.

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry (4KEc core).

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL
Fetch address alignment error.

User mode fetch reference to kernel address.

TLBL
Fetch TLB miss (4KEc core).

Fetch TLB hit to page with V=0 (4KEc core).

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

RI Execution of a Reserved Instruction.

C2E Execution of coprocessor 2 instruction which caused a general exception in
the coprocessor.

IS1 Execution of coprocessor 2 instruction which caused an Implementation
Specific exception 1 in the coprocessor.

IS2 Execution of coprocessor 2 instruction which caused an Implementation
Specific exception 2 in the coprocessor.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 55

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

o
lso
ovided
ts were
sed on

ease 1
upports

ure.

to that
 denoted
ore,

full
f this
e,
4.3 Interrupts

Older 32-bit cores available from MIPS that implemented Release 1 of the Architecture included support for tw
software interrupts, six hardware interrupts, and a special-purpose timer interrupt. (Note that the Architecture a
defines a performance counter interrupt, but this is not implemented on the 4KE core.) The timer interrupt was pr
external to the core and typically combined with hardware interrupt 5 in an system-dependent manner. Interrup
handled either through the general exception vector (offset 16#180) or the special interrupt vector (16#200), ba
the value of CauseIV. Software was required to prioritize interrupts as a function of the CauseIP bits in the interrupt
handler prologue.

Release 2 of the Architecture, implemented by the 4KE core, adds an upward-compatible extension to the Rel
interrupt architecture that supports vectored interrupts. In addition, Release 2 adds a new interrupt mode that s
the use of an external interrupt controller by changing the interrupt architecture.

4.3.1 Interrupt Modes

The 4KE core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architect

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated
interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
by the VInt bit in theConfig3register. This mode is architecturally optional; but it is always present on the 4KE c
so the VInt bit will always read as a 1 for the 4KE core.

• External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide
support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence o
mode denoted by the VEIC bit in theConfig3register. Again, this mode is architecturally optional. On the 4KE cor

DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Value Break on
Store (address and value).

WATCH A reference to an address in one of the watch registers (data).

AdEL
Load address alignment error.

User mode load reference to kernel address.

AdES
Store address alignment error.

User mode store to kernel address.

TLBL

Load TLB miss (4KEc core).

Load TLB hit to page with V=0 (4KEc core).

TLBS
Store TLB miss (4KEc core).

Store TLB hit to page with V=0 (4KEc core).

TLB Mod Store to TLB page with D=0 (4KEc core).

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint matched in load data compare.

Table 4-1 Priority of Exceptions (Continued)

Exception Description
56 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

n

of the

at can

terrupts
the VEIC bit is set externally by the static input,SI_EICPresent, to allow system logic to indicate the presence of a
external interrupt controller.

The reset state of the processor is to interrupt compatibility mode such that a processor supporting Release 2
Architecture, like the 4KE core, is fully compatible with implementations of Release 1 of the Architecture.

Table 4-2 shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields th
affect the mode.

4.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, in
are non-vectored and dispatched though exception vector offset 16#180 (if CauseIV = 0) or vector offset 16#200 (if
CauseIV = 1). This mode is in effect if any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

A typical software handler for interrupt compatibility mode might look as follows:

/*
 * Assumptions:
 * - Cause IV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */

Table 4-2 Interrupt Modes
S

ta
tu

s B
E

V

C
au

se
IV

In
tC

tl
V

S

C
on

fig
3 V

IN
T

C
on

fig
3 V

E
IC

Interrupt Mode

1 x x x x Compatibly

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller

0 1 ≠0 0 0
Can’t happen - IntCtlVS can not be non-zero if neither
Vectored Interrupt nor External Interrupt Controller
mode is implemented.

“x” denotes don’t care
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 57

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtl VS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other Status IM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simple return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
58 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

ding
s mode
t mode

 timer
pt with
/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

4.3.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pen
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. Thi
also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Interrup
is in effect if all of the following conditions are true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The
interrupt is combined in a system-dependent way (external to the core) with the hardware interrupts (the interru
which they are combined is indicated by theIntCtlIPTI field) to provide the appropriate relative priority of the timer
interrupt with that of the hardware interrupts. The processor interrupt logic ANDs each of theCauseIP bits with the
correspondingStatusIM bits. If any of these values is 1, and if interrupts are enabled (StatusIE = 1, StatusEXL = 0, and
StatusERL = 0), an interrupt is signaled and a priority encoder scans the values in the order shown inTable 4-3.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 59

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

riority
uts an
shown

eption
ching
r may

de shown
The priority order places a relative priority on each hardware interrupt and places the software interrupts at a p
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outp
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
pictorially in Figure 4-1.

Figure 4-1 Interrupt Generation for Vectored Interrupt Mode

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the IVexc
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispat
directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt handle
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInterrupt co
above need not save the GPRs.

Table 4-3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt
Request

Calculated
From

Vector Number
Generated by

Priority Encoder

Highest Priority

Hardware

HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

HW0 IP2 and IM2 2

Software
SW1 IP1 and IM1 1

Lowest Priority SW0 IP0 and IM0 0

IP7

IP6

IP5

IP4

IP3

IP2

IP1

IP0

IM7

IM6

IM5

IM4

IM3

IM2

IM1

IM0

P
rio

rit
y

E
nc

od
e

HW5

HW4

HW3

HW2

HW1

HW0

C
om

bi
ne

CauseTI

StatusIE

Interrupt
Request

Vector
Number

Latch Mask Encode

Any
Request

O
ffs

et
G

en
er

at
or

IntCtlVS

Exception
Vector Offset

Generate

SRSMap

Shadow Set
Number

IntCtlIPTI
60 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

ested
ht look

ovide
ding
A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the n
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine mig
as follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtl PSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

4.3.1.3 External Interrupt Controller Mode

External Internal Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to pr
support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, inclu
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 61

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

number

dent
rable

function

riority
oded
63
s value

is
rupt

tarts

e to

ber to
ed
t GPR
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector
of the highest priority interrupt. EIC interrupt mode is in effect if all of the following conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0) and the timer
interrupt request (CauseTI) to the external interrupt controller, where it prioritizes these interrupts in a system-depen
way with other hardware interrupts. The interrupt controller can be a hard-wired logic block, or it can be configu
based on control and status registers. This allows the interrupt controller to be more specific or more general as a
of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest p
interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit enc
value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The values 1..
represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller passes thi
on the 6 hardware interrupt line, which are treated as an encoded value in EIC interrupt mode.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the inter
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor s
the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external interrupt
controller to notify it that the request is being serviced. The interrupt exception uses the value of CauseRIPL as the vector
number. Because CauseRIPL is only loaded by the processor when an interrupt exception is signaled, it is availabl
software during interrupt processing.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set num
use when servicing the interrupt. As such, theSRSMapregister is not used in this mode, and the mapping of the vector
interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the correc
shadow set number when an interrupt is requested. When the processor loads an interrupt request into CauseRIPL, it also
loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the interrupt is serviced.

The operation of EIC interrupt mode is shown pictorially inFigure 4-2.
62 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

label
irectly

n above

ested
 copy
 as
Figure 4-2 Interrupt Generation for External Interrupt Controller Interrupt Mode

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the IVexception
shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching d
to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may take
advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInterrupt code show
need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the n
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only
CauseRIPL to StatusIPL to prevent lower priority interrupts from interrupting the handler. Such a routine might look
follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k1, C0_Cause /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave

CauseTI
CausePCI

StatusIE

Interrupt
Request

Vector
Number

Latch CompareEncode

Any
Request

O
ffs

et
G

en
er

at
or

IntCtlVS

Exception
Vector Offset

Generate

Shadow Set
Number

E
xt

er
na

l I
nt

er
ru

pt
 C

on
tr

ol
le

r

In
te

rr
up

t S
ou

rc
es

S
ha

do
w

 S
et

M
ap

pi
ng

StatusIP1
StatusIP0

Requested
IPL

C
au

se
R

IP
L

S
ta

tu
s IP

L

S
R

S
C

tl E
IC

S
S

RIPL
>

IPL?

Load
Fields

Interrupt
Exception

Interrupt Service
Started
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 63

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

logic.
ption
ector

r reverts
/* If switching shadow sets, write new value to SRSCtl PSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

4.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
This number is combined with IntCtlVS to create the interrupt offset, which is added to 16#200 to create the exce
vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC interrupt mode, the v
number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtlVS field specifies the spacing
between vector locations. If this value is zero (the default reset state), the vector spacing is zero and the processo
to Interrupt Compatibility Mode. A non-zero value enables vectored interrupts, andTable 4-4shows the exception vector
offset for a representative subset of the vector numbers and values of the IntCtlVS field.

Table 4-4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtl VS Field

2#00001 2#00010 2#00100 2#01000 2#10000

0 16#0200 16#0200 16#0200 16#0200 16#0200

1 16#0220 16#0240 16#0280 16#0300 16#0400

2 16#0240 16#0280 16#0300 16#0400 16#0600

3 16#0260 16#02C0 16#0380 16#0500 16#0800

4 16#0280 16#0300 16#0400 16#0600 16#0A00

5 16#02A0 16#0340 16#0480 16#0700 16#0C00

6 16#02C0 16#0380 16#0500 16#0800 16#0E00

7 16#02E0 16#03C0 16#0580 16#0900 16#1000

•
•
•

61 16#09A0 16#1140 16#2080 16#3F00 16#7C00

62 16#09C0 16#1180 16#2100 16#4000 16#7E00

63 16#09E0 16#11C0 16#2180 16#4100 16#8000
64 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.4 GPR Shadow Registers

errupts
ultiple
nel

efines
number
d.

 via an
actly as
ay need
. The

w

iting to
adow
ing of

 are

r a

s:
The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 16#200 + (vectorNumber × (IntCtl VS || 2#00000))

4.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority int
or exceptions, and to provide specified processor modes with the same capability. This is done by introducing m
copies of the GPRs, calledshadow sets, and allowing privileged software to associate a shadow set with entry to ker
mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the 4KE core. Although Release 2 of the Architecture d
a maximum of 16 shadow sets, the core allows one (the normal GPRs), two, or four shadow sets. The highest
actually implemented is indicated by the SRSCtlHSS field. If this field is zero, only the normal GPRs are implemente

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work ex
one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software m
to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode
RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of theSRSCtlregister provides the number
of the current shadow register set, and the PSS field of theSRSCtlregister provides the number of the previous shado
register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by wr
theSRSMapregister. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific sh
set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Bind
an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of theSRSCtlregister. When
an exception or interrupt occurs, the value of SRSCtlCSSis copied to SRSCtlPSS, and SRSCtlCSSis set to the value taken
from the appropriate source. On an ERET, the value of SRSCtlPSSis copied back into SRSCtlCSSto restore the shadow
set of the mode to which control returns. More precisely, the rules for updating the fields in theSRSCtl register on an
interrupt or exception are as follows:

1. No field in theSRSCtl register is updated if any of the following conditions is true. In this case, steps 2 and 3
skipped.

• The exception is one that sets StatusERL: Reset, Soft Reset, or NMI.

• The exception causes entry into EJTAG Debug Mode

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of theSRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of theSRSCtlregister if the exception is an interrupt, CauseIV = 1, and Config3VEIC = 1. These
are the conditions for a vectored EIC interrupt.

• The ESS field of theSRSCtl register in any other case. This is the condition for a non-interrupt exception, o
non-vectored interrupt.

Similarly, the rules for updating the fields in theSRSCtl register at the end of an exception or interrupt are as follow
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 65

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

ped.

fore

et and
hitecture,

n the
he IV
ception
se

address
d that
1. No field in theSRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skip

• A DERET is executed

• An ERET is executed with StatusERL = 1

2. SRSCtlPSS is copied to SRSCtlCSS

These rules have the effect of preserving theSRSCtlregister in any case of a nested exception or one which occurs be
the processor has been fully initialize (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a target
address, and doing an ERET.

4.5 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location16#BFC0.0000 . EJTAG Debug exceptions
are vectored to location16#BFC0.0480 , or to location16#FF20.0200 if the ProbTrap bit is zero or one,
respectively, in the EJTAG_Control_register. Addresses for all other exceptions are a combination of a vector offs
a vector base address. In Release 1 of the architecture, the vector base address was fixed. In Release 2 of the arc
software is allowed to specify the vector base address via theEBase register for exceptions that occur when StatusBEV
equals 0.Table 4-5 gives the vector base address as a function of the exception and whether the BEV bit is set i
Statusregister.Table 4-6gives the offsets from the vector base address as a function of the exception. Note that t
bit in theCause register causes Interrupts to use a dedicated exception vector offset, rather than the general ex
vector. For implementations of Release 2 of the Architecture,Table 4-4gives the offset from the base address in the ca
where StatusBEV = 0 and CauseIV = 1. For implementations of Release 1 of the architecture in which CauseIV = 1, the
vector offset is as if IntCtlVS were 0.Table 4-7 combines these two tables into one that contains all possible vector
addresses as a function of the state that can affect the vector selection. To avoid complexity in the table, the vector
value assumes that theEBaseregister, as implemented in Release 2 devices, is not changed from its reset state an
IntCtlVS is 0.

Table 4-5 Exception Vector Base Addresses

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 16#BFC0.0000

EJTAG Debug (with ProbEn = 0 in
the EJTAG_Control_register) 16#BFC0.0480

EJTAG Debug (with ProbEn = 1 in
the EJTAG_Control_register) 16#FF20.0200

Other

For Release 1 of the architecture:

16#8000.0000

For Release 2 of the architecture:

EBase31..12 || 16#000

Note that EBase31..30 have the
fixed value2#10

16#BFC0.0200
66 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.6 General Exception Processing

pecial

ction is
4.6 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own s
processing as described below, exceptions have the same basic processing flow:

• If the EXL bit in theStatus register is zero, theEPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in theCauseregister (seeTable 5-22 on page 117). The value loaded into
theEPCregister is dependent on whether the processor implements the MIPS16 ASE, and whether the instru

Table 4-6 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 16#000

General Exception 16#180

Interrupt, CauseIV = 1

16#200 (In Release 2
implementations, this is the base of
the vectored interrupt table when

StatusBEV = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)

Table 4-7 Exception Vectors

Exception StatusBEV StatusEXL CauseIV

EJTAG
ProbEn

Vector

For Release 2
Implementations, assumes
that EBase retains its reset
state and that IntCtlVS = 0

Reset, Soft Reset, NMI x x x x 16#BFC0.0000

EJTAG Debug x x x 0 16#BFC0.0480

EJTAG Debug x x x 1 16#FF20.0200

TLB Refill 0 0 x x 16#8000.0000

TLB Refill 0 1 x x 16#8000.0180

TLB Refill 1 0 x x 16#BFC0.0200

TLB Refill 1 1 x x 16#BFC0.0380

Interrupt 0 0 0 x 16#8000.0180

Interrupt 0 0 1 x 16#8000.0200

Interrupt 1 0 0 x 16#BFC0.0380

Interrupt 1 0 1 x 16#BFC0.0400

All others 0 x x x 16#8000.0180

All others 1 x x x 16#BFC0.0380

‘x’ denotes don’t care
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 67

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

 CE

handler
tify the

iption
in the delay slot of a branch or jump which has delay slots.Table 4-8 shows the value stored in each of the CP0 PC
registers, includingEPC. For implementations of Release 2 of the Architecture if StatusBEV = 0, the CSS field in the
SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in theStatus register is set, theEPC register is not loaded and the BD bit is not changed in theCause
register. For implementations of Release 2 of the Architecture, theSRSCtl register is not changed.

.

• The CE, and ExcCode fields of theCause registers are loaded with the values appropriate to the exception. The
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in theStatus register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to iden
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descr
of each exception type below.

Operation:

/* If Status EXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor Cause BD nor SRSCtl are modified */
if Status EXL = 1 then

vectorOffset ← 16#180
else

if InstructionInBranchDelaySlot then
EPC ← restartPC/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtl ESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset ← 16#000
elseif (ExceptionType = Interrupt) then

if (Cause IV = 0) then
vectorOffset ← 16#180

else
if (Status BEV = 1) or (IntCtl VS = 0) then

Table 4-8 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with theISA Mode bit

Yes Yes
Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with theISA Mode bit
68 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.7 Debug Exception Processing

DBD

f a
vectorOffset ← 16#200
else

if Config3 VEIC = 1 then
VecNum ← Cause RIPL
NewShadowSet ← SRSCtl EICSS

else
VecNum ← VIntPriorityEncoder()
NewShadowSet ← SRSMapIPL ×4+3..IPL ×4

endif
vectorOffset ← 16#200 + (VecNum × (IntCtl VS || 2#00000))

endif /* if (Status BEV = 1) or (IntCtl VS = 0) then */
endif /* if (Cause IV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if ((ArchitectureRevision ≥ 2) and (SRSCtl HSS > 0) and (Status BEV = 0) and

(Status ERL = 0)) then
SRSCtl PSS ← SRSCtl CSS
SRSCtl CSS ← NewShadowSet

endif
endif /* if Status EXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
Status EXL ← 1

/* Calculate the vector base address */
if Status BEV = 1 then

vectorBase ← 16#BFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase 31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase 31..12 || 16#000

else
vectorBase ← 16#8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC ← vectorBase 31..30 || (vectorBase 29..0 + vectorOffset 29..0)

/* No carry between bits 29 and 30 */

4.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• TheDEPCregister is loaded with the program counter (PC) value at which execution will be restarted and the
bit is set appropriately in theDebug register. The value loaded into theDEPC register is the current PC if the
instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot o
branch.

• The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in theDebugregister are updated appropriately
depending on the debug exception type.

• Halt and Doze bits in theDebug register are updated appropriately.

• DM bit in theDebug register is set to 1.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 69

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

debug

) in

obTrap

e.
ines,
m
 following
• The processor is started at the debug exception vector.

The value loaded intoDEPCrepresents the restart address for the debug exception and need not be modified by the
exception handler software in the usual case. Debug software need not look at the DBD bit in theDebugregister unless
it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]
theDebugregister.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC ← PC-4
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugD* bits at at [5:0] ← DebugExceptionType
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugDM ← 1
if EJTAGControlRegister ProbTrap = 1 then

PC ← 0xFF20_0200
else

PC ← 0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Pr
bit in the EJTAG Control register (ECR), as shown inTable 4-9.

4.8 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown inTable 4-1.

4.8.1 Reset Exception

A reset exception occurs when theSI_ColdReset signal is asserted to the processor. This exception is not maskabl
When a Reset exception occurs, the processor performs a full reset initialization, including aborting state mach
establishing critical state, and generally placing the processor in a state in which it can execute instructions fro
uncached, unmapped address space. On a Reset exception, the state of the processor is not defined, with the
exceptions:

• TheRandom register is initialized to the number of TLB entries - 1.

• TheWired register is initialized to zero.

Table 4-9 Debug Exception Vector Addresses

ProbTrap bit in
ECR Register Debug Exception Vector Address

0 0xBFC0_0480

1 0xFF20_0200 in dmseg
70 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

uction

hen
et
 the
 cache, or
ent. In

uction
• TheConfig register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• The I, R, and W fields of theWatchLo register are initialized to 0.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instr
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC. Note that this value may or may
not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Random ← TLBEntries - 1
Wired ← 0
Config ← ConfigurationState
Status RP ← 0
Status BEV ← 1
Status TS ← 0
Status SR ← 0
Status NMI ← 0
Status ERL ← 1
WatchLo I ← 0
WatchLo R ← 0
WatchLo W ← 0
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

4.8.2 Soft Reset Exception

A soft reset exception occurs when theSI_Resetsignal is asserted to the processor. This exception is not maskable. W
a soft reset exception occurs, the processor performs a subset of the full reset initialization. Although a soft res
exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsist
addition to any hardware initialization required, the following state is established on a soft reset exception:

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instr
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC. Note that this value may or may
not be predictable.

• PC is loaded with 0xBFC0_0000.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 71

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

en

tion in
 register,

he next
ction
er set
 step.

hough
taken on
turning

tion, and
e the

ons,
Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Status BEV ← 1
Status TS ← 0
Status SR ← 1
Status NMI ← 0
Status ERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

4.8.3 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, wh
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruc
the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug
and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also t
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instru
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is nev
for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even t
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then
the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g. re
to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint excep
the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch) just befor
SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other excepti
except reset and soft reset.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector
72 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

th no
ue
g in the

t
emory,

uction
4.8.4 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in theEJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but wi
specific relation to the executed instructions. TheDEPCregister is set to the instruction where execution should contin
after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was executin
delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

4.8.5 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when theSI_NMIsignal is asserted to the processor.SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only a
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, m
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instr
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Status BEV ← 1
Status TS ← 0
Status SR ← 0
Status NMI ← 1
Status ERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 73

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

causes

TLB

opriate
.

nabled

 first
n has

omplete

ruction.
4.8.6 Machine Check Exception (4KEc™ core)

A machine check exception occurs when the processor detects an internal inconsistency. The following condition
a machine check exception:

• The detection of multiple matching entries in the TLB (4KEc core only). The core detects this condition on a
write and prevents the write from being completed. The TS bit in theStatus register is set to indicate this condition.
This bit is only a status flag and does not affect the operation of the device. Software clears this bit at the appr
time. This condition is resolved by flushing the conflicting TLB entries. The TLB write can then be completed

Cause Register ExcCode Value:

MCheck

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.7 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requests is e
by theStatusregister and the interrupt input is asserted. SeeSection 4.3, "Interrupts" on page 56for more details about
the processing of interrupts.

XXX Is this paragraph still relevant? XXX The delay from assertion of an unmasked interrupt to the fetch of the
instructions at the exception vector is a minimum of 5 clock cycles. More may be needed if a committed instructio
to complete, before the exception can be taken; i.e., an uncached load that has started on the bus must wait c
before the interrupt exception can be taken.

Register ExcCode Value:

Int

Additional State Saved:

Entry Vector Used:

SeeSection 4.3.2, "Generation of Exception Vector Offsets for Vectored Interrupts" on page 64for the entry vector
used, depending on the interrupt mode the processor is operating in.

4.8.8 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed inst
TheDEPC register and DBD bit in theDebug register indicate the instruction that caused the instruction hardware
breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Table 4-10 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.
74 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

 data

ly

 an

f the

ondition
access

sor mode
Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.8.9 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or
reference matches the address information stored in theWatchHi andWatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of theStatus register are both zero and the DM bit of theDebugis also zero. If
any of those bits is a one at the time that a watch exception would normally be taken, then the WP bit in theCauseregister
is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in theCause register to
determine if theEPC register points at the instruction that caused the watch exception, or if the exception actual
occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:

WATCH

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.8.10 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one o
following:

• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the c
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data
the exception is taken if either an unaligned address or an address that was inaccessible in the current proces
was referenced by a load or store instruction.

Table 4-11 Register States on a Watch Exception

Register State Value

CauseWP

Indicates that the watch exception was deferred until after
StatusEXL, StatusERL, and DebugDM were zero. This bit
directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler
execution.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 75

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

ce to a
ry
Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.8.11 TLB Refill Exception — Instruction Fetch or Data Access (4KEc™ core only)

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches a referen
mapped address space and the EXL bit is 0 in theStatusregister. Note that this is distinct from the case in which an ent
matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;

general exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

Table 4-12 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 4-13 CP0 Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address.

Context The BadVPN2 field contains VA31:13 of the failing
address.

EntryHi
The VPN2 field contains VA31:13of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
76 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

 an
struction
rror

rs, such

ycle.
4.8.12 TLB Invalid Exception — Instruction Fetch or Data Access (4KEc™ core only)

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in theStatus register.

• A TLB entry matches a reference to a mapped address space, but the matched entry has the valid bit off.

• The virtual address is greater than or equal to the bounds address in a FM-based MMU.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.8.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an in
fetch or a data access. Bus error exceptions that occur on an instruction fetch have a higher priority than bus e
exceptions that occur on a data access.

Bus errors taken on the requested (critical) word of an instruction fetch or data load are precise. Other bus erro
as stores or non-critical words of a burst read, can be imprecise. These errors are taken when theEB_RBErr or
EB_WBErr signals are asserted and may occur on an instruction that was not the source of the offending bus c

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

Table 4-14 CP0 Register States on a TLB Invalid Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing
address.

EntryHi
The VPN2 field contains VA31:13 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 77

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

ity. A

ty. A

priority.
ed. This
4.8.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. TheDEPC register and DBD
bit in theDebug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:

DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.8.15 Execution Exception — System Call

The system call exception is one of the nine execution exceptions. All of these exceptions have the same prior
system call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.16 Execution Exception — Breakpoint

The breakpoint exception is one of the nine execution exceptions. All of these exceptions have the same priori
breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the nine execution exceptions. All of these exceptions have the same
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is execut
includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:

RI
78 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

 same
for one

ority. A
cessor 2.

ed in a

e same
Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the nine execution exceptions. All of these exceptions have the
priority. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction
of the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in theStatus register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.8.19 Execution Exception — Coprocessor 2 Exception

The Coprocessor 2 exception is one of the nine execution exceptions. All of these exceptions have the same pri
Coprocessor 2 exception occurs when a valid Coprocessor 2 instruction cause a general exception in the Copro

Cause Register ExcCode Value:

C2E

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be sav
Coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.20 Execution Exception — Implementation-Specific 1 exception

The Implementation-Specific 1 exception is one of the nine execution exceptions. All of these exceptions have th
priority. An implementation-specific 1 exception occurs when a valid coprocessor 2 instruction cause an
implementation-specific 1 exception in the Coprocessor 2.

Table 4-15 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE unit number of the coprocessor being referenced
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 79

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

ed in a

e same

ed in a

priority.

p

Cause Register ExcCode Value:

IS1

Additional State Saved:

Depending on the coprocessor 2 implementation, additional state information of the exception can be sav
coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.21 Execution Exception — Implementation Specific 2 exception

The Implementation-Specific 2 exception is one of the nine execution exceptions. All of these exceptions have th
priority. An implementation-specific 2 exception occurs when a valid Coprocessor 2 instruction cause an
implementation-specific 2 exception in the Coprocessor 2.

Cause Register ExcCode Value:

IS2

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be sav
Coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.22 Execution Exception — Integer Overflow

The integer overflow exception is one of the nine execution exceptions. All of these exceptions have the same
An integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.23 Execution Exception — Trap

The trap exception is one of the nine execution exceptions. All of these exceptions have the same priority. A tra
exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Additional State Saved:

None
80 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

executed
t
s not
handler.

ing
Entry Vector Used:

General exception vector (offset 0x180)

4.8.24 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an
load/store instruction. TheDEPCregister and DBD bit in theDebugregister will indicate the load/store instruction tha
caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception ha
completed e.g. not updated the register file, and the instruction can be re-executed after returning from the debug

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.8.25 TLB Modified Exception — Data Access (4KEc™ core only)

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the follow
condition is true:

• The matching TLB entry is valid, but not dirty.

Cause Register ExcCode Value:

Mod

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

Table 4-16 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing
address.

EntryHi
The VPN2 field contains VA31:13 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 81

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

:

ote that
struction
sed at
RET
4.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers

• General exceptions and their exception handler

• TLB miss exception and their exception handler

• Reset, soft reset and NMI exceptions, and a guideline to their handler.

• Debug exceptions

Generally speaking, the exceptions are handled by hardware; the exceptions are then serviced by software. N
unexpected debug exceptions to the debug exception vector at 0xBFC0_0200 may be viewed as a reserved in
since uncontrolled execution of an SDBBP instruction caused the exception. The DERET instruction must be u
return from the debug exception handler, in order to leave debug mode and return to non-debug mode. The DE
instruction returns to the address in theDEPC register.
82 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.9 Exception Handling and Servicing Flowcharts
Figure 4-3 General Exception Handler (HW)

To General Exception Servicing Guidelines

=1 (bootstrap)=0 (normal)
Status.BEV

Comments

PC ← 0x8000_0000 + 180
(unmapped, cached)

PC ← 0xBFC0_0200 + 180
(unmapped, uncached)

EXL ← 1

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Instr. in
Br.Dly. Slot?

Yes

Processor forced to Kernel
Mode &interrupt disabled

=0

=1
Check if exception within

another exception EXL

EnHi and Context are set only for
TLB- Invalid, Modified, & Refill
exceptions. BadVA is set only for
TLB- Invalid, Modified, Refill- and
VCED/I exceptions. Note: not set if it
is a Bus Error

EntryHi ← VPN2, ASID
Context ← VPN2

Set Cause EXCCode,CE
BadVA ← VA

Exceptions other than Reset, Soft Reset, NMI, or first-level TLB
missNote: Interrupts can be masked by IE or IMs and Watch is masked
if EXL = 1

No
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 83

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core
Figure 4-4 General Exception Servicing Guidelines (SW)

ERET

MTC0 -
EPC,STATUS

EXL = 1

Service Code

* ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction
which is in the ERET’s branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0

Check Cause value & Jump to
appropriate Service Code

* After EXL=0, all exceptions allowed.
(except interrupt if masked by IE)

(Optional - only to enable Interrupts while keeping
Kernel Mode)

MTC0 -
Set Status bits:

UM ← 0, EXL ←0,
IE←1

MFC0 -
Context, EPC, Status, Cause

* Unmapped vector so TLBMod, TLBInv, or TLB
Refill exceptions not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions
possible.

Comments
84 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.9 Exception Handling and Servicing Flowcharts
Figure 4-5 TLB Miss Exception Handler (HW) — 4KEc™ Core

To TLB Exception Servicing Guidelines

Vec. Off. = 0x180

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Vec. Off. = 0x000

EXL ← 1

Points to General Exception

Processor forced to Kernel
Mode &interrupt disabled

=0

=1 (bootstrap)=0 (normal)

PC ← 0x8000_0000 +
Vec.Off.(unmapped. cached)

PC ← 0xBFC0_0200 +
Vec.Off.(unmapped. uncached)

Status.BEV

Check if exception within
another exception=1=1

=0

EXL EXL

EntryHi ← VPN2, ASID
Context ← VPN2

Set Cause EXCCode,CE
BadVA ← VA

Instr. in
Br.Dly. Slot?

NoYes
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 85

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core
Figure 4-6 TLB Exception Servicing Guidelines (SW) — 4KEc™ Core

Comments

ERET

Service Code

MFC0 -CONTEXT

* Unmapped vector so TLBMod, TLBInv, or TLB
Refill exceptions not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions
possible.

* Load the mapping of the virtual address in
Context Reg. Move it to EntryLo and write into
the TLB
* There could be a TLB miss again during the
mapping of the data or instruction address. The
processor will jump to the general exception
vector since the EXL is 1. (Option to complete
the first level refill in the general exception
handler or ERET to the original instruction and
take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction
which is in the ERET’s branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0
86 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.9 Exception Handling and Servicing Flowcharts
Figure 4-7 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

Status:
BEV ← 1
TS ← 0

SR ← 1/0
NMI ← 0/1
ERL ← 1

(Optional)

Reset Service CodeSoft Reset Service Code

NMI Service Code

ERET

=0

=1

=0

=1

Status.SR

Status.NMI

PC ← 0xBFC0_0000

ErrorEPC ← PC

Random ← TLBENTRIES - 1
Wired ← 0
Config ← Reset state
Status:

RP ← 0
BEV ← 1
TS ← 0
SR ← 0
NMI ← 0
ERL ← 1

WatchLo:
I, R,W ← 0

Reset Exception

Soft Reset or NMI Exception

R
es

et
, S

of
t R

es
et

 &
 N

M
I E

xc
ep

tio
n

H
an

dl
in

g
(H

W
)

R
es

et
,S

of
tR

es
et

&
N

M
IS

er
vi

ci
ng

G
ui

de
lin

es
 (

S
W

)

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 87

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 88

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

rts
ter has a

TC0)
”

Chapter 5

CP0 Registers of the 4KE™ Core

The System Control Coprocessor (CP0) provides the register interface to the 4KE™ processor core and suppo
memory management, address translation, exception handling, and other privileged operations. Each CP0 regis
unique number that identifies it; this number is referred to as theregister number. For instance, thePageMaskregister is
register number 5. For more information on the EJTAG registers, refer toChapter 9, “EJTAG Debug Support in the
4KE™ Core.”.

After updating a CP0 register there is a hazard period of zero or more instructions from the update instruction (M
and until the effect of the update has taken place in the core. Refer toChapter 11, “4KE™ Processor Core Instructions,
for further details on CP0 hazards.

The current chapter contains the following sections:

• Section 5.1, "CP0 Register Summary" on page 90

• Section 5.2, "CP0 Register Descriptions" on page 92
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 89

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

Where
 their
5.1 CP0 Register Summary

Table 5-1lists the CP0 registers in numerical order. The individual registers are described throughout this chapter.
more than one registers shares the same register number at different values of the “sel” field of the instruction,
names are listed using a slash (/) as separator.

Table 5-1 CP0 Registers

Register
Number Register Name Function

0 Index3 Index into the TLB array (4KEc core). This register is reserved
in the 4KEp and 4KEm cores.

1 Random3 Randomly generated index into the TLB array (4KEc core). This
register is reserved in the 4KEp and 4KEm cores.

2 EntryLo03
Low-order portion of the TLB entry for even-numbered virtual
pages (4KEc core). This register is reserved in the 4KEp and
4KEm cores.

3 EntryLo13
Low-order portion of the TLB entry for odd-numbered virtual
pages (4KEc core). This register is reserved in the 4KEp and
4KEm cores.

4 Context1
Pointer to page table entry in memory (4KEc core). This register
is reserved in the 4KEp and 4KEm cores.

5 PageMask/
PageGrain3

PageMask controls the variable page sizes in TLB entries.
PageGrain enables support of 1KB pages in the TLB. These
registers are defined for the 4KEc core only, and reserved in the
4KEp and 4KEm cores.

6 Wired3 Controls the number of fixed (“wired”) TLB entries (4KEc
core). This register is reserved in the 4KEp and 4KEm cores.

7 HWREna Enables access via the RDHWR instruction to selected hardware
registers in non-privileged mode.

8 BadVAddr1 Reports the address for the most recent address-related
exception.

9 Count1 Processor cycle count.

10 EntryHi3 High-order portion of the TLB entry (4KEc core). This register
is reserved in the 4KEp and 4KEm cores.

11 Compare1 Timer interrupt control.

12

Status/
IntCtl/
SRSCtl/
SRSMap1

Processor status and control; interrupt control; and shadow set
control.

13 Cause1 Cause of last exception.

14 EPC1 Program counter at last exception.

15 PRId/
EBase Processor identification and revision; exception base address.
90 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.1 CP0 Register Summary
16

Config/
Config1/
Config2/
Config3

Configuration registers.

17 LLAddr Load linked address.

18 WatchLo1 Low-order watchpoint address.

19 WatchHi1 High-order watchpoint address.

20 - 22 Reserved Reserved

23

Debug/
TraceControl/
TraceControl2/
UserTraceData/
TraceBPC2

Debug control/exception status and EJTAG trace control.

24 DEPC2 Program counter at last debug exception.

25 Reserved Reserved

26 ErrCtl Software test enable of way-select and Data RAM arrays for
I-Cache and D-Cache.

27 Reserved Reserved

28 TagLo/DataLo Low-order portion of cache tag interface.

29 Reserved Reserved

30 ErrorEPC1 Program counter at last error.

31 DeSAVE2 Debug handler scratchpad register.

Note: 1. Registers used in exception processing.

Note: 2. Registers used in debug.

Note: 3. Registers used in memory management.

Table 5-1 CP0 Registers (Continued)

Register
Number Register Name Function
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 91

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

with the

t state of
5.2 CP0 Register Descriptions

The CP0 registers provide the interface between the ISA and the architecture. Each register is discussed below,
registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the rese
the field. For the read/write properties of the field, the following notation is used:

Table 5-2 CP0 Register Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W

A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software reads. Software updates of this field are
visible by hardware reads.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

R

A field that is either static or is updated only by
hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
or to the appropriate state, respectively, on
powerup.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting
hardware behavior. Software reads of this field
return the last value updated by hardware.

If the Reset State of this field is “Undefined,”
software reads of this field result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

W
A field that can be written by software but which can not be read by software.

Software reads of this field will return an UNDEFINED value.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may result in UNDEFINED
behavior of the hardware. Software reads of
this field return zero as long as all previous
software writes are zero.

If the Reset State of this field is “Undefined,”
software must write this field with zero before
it is guaranteed to read as zero.
92 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

, and
B

ritten
5.2.1 Index Register (CP0 Register 0, Select 0)

TheIndex register is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TL
entries that are implemented. The minimum value for TLB-based MMUs isCeiling(Log2(TLBEntries)).

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is w
to theIndex register.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp).

Figure 5-1 Index Register Format

31 30 4 3 0

P 0 Index

Table 5-3 Index Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

P 31 Probe Failure. Set to 1 when the previous TLBProbe
(TLBP) instruction failed to find a match in the TLB. R Undefined

0 30:4 Must be written as zeros; returns zeros on reads. 0 0

Index 3:0 Index to the TLB entry affected by the TLBRead and
TLBWrite instructions. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 93

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

The

ontents

d that
5.2.2 Random Register (CP0 Register 1, Select 0)

TheRandom register is a read-only register whose value is used to index the TLB during a TLBWR instruction.
width of the Random field is calculated in the same manner as that described for theIndex register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the c
of theWiredregister). The entry indexed by theWiredregister is the first entry available to be written by a TLB Write
Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

TheRandomregister is decremented by one almost every clock, wrapping after the value in theWiredregister is reached.
To enhance the level of randomness and reduce the possibility of a live lock condition, an LFSR register is use
prevents the decrement pseudo-randomly.

The processor initializes theRandom register to the upper bound on a Reset exception and when theWired register is
written.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp).

Figure 5-2Random Register Format

31 4 3 0

0 Random

Table 5-4Random Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

0 31:4 Must be written as zero; returns zero on reads. 0 0

Random 3:0 TLB Random Index R TLB Entries - 1
94 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

ns.

ed,

KEp).
5.2.3 EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0)

The pair ofEntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructio
For a TLB-based MMU,EntryLo0 holds the entries for even pages andEntryLo1 holds the entries for odd pages.

The contents of theEntryLo0 andEntryLo1 registers are undefined after an address error, TLB invalid, TLB modifi
or TLB refill exception.

These registers are only valid with the TLB (4KEc core). They are reserved if the FM is implemented (4KEm and 4

Figure 5-3EntryLo0, EntryLo1 Register Format

31 30 29 26 25 6 5 3 2 1 0

R 0 PFN C D V G

Table 5-5EntryLo0, EntryLo1 Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

R 31:30 Reserved. Should be ignored on writes; returns zero on
reads. R 0

0 29:26

These 4 bits are normally part of the PFN, however, since
the core supports only 32 bits of physical address, the PFN
is only 20 bits wide; therefore, bits 29:26 of this register
must be written with zeros.

R/W 0

PFN 25:6

Page Frame Number. Contributes to the definition of the
high-order bits of the physical address.

If the processor is enabled to support 1KB pages
(Config3SP = 1 and PageGrainESP = 1), the PFN field
corresponds to bits 29..10 of the physical address (the field
is shifted left by 2 bits relative to the Release 1 definition
to make room for PA11..10).

If the processor is not enabled to support 1KB pages
(Config3SP = 0 or PageGrainESP = 0), the PFN field
corresponds to bits 31..12 of the physical address.

R/W Undefined

C 5:3 Coherency attribute of the page. SeeTable 5-6. R/W Undefined

D 2

“Dirty” or write-enable bit, indicating that the page has
been written, and/or is writable. If this bit is a one, then
stores to the page are permitted. If this bit is a zero, then
stores to the page cause a TLB Modified exception.

R/W Undefined

V 1

Valid bit, indicating that the TLB entry, and thus the virtual
page mapping are valid. If this bit is a one, then accesses to
the page are permitted. If this bit is a zero, then accesses to
the page cause a TLB Invalid exception.

R/W Undefined

G 0

Global bit. On a TLB write, the logical AND of the G bits
in both the EntryLo0 and EntryLo1 register becomes the G
bit in the TLB entry. If the TLB entry G bit is a one, then
the ASID comparisons are ignored during TLB matches.
On a read from a TLB entry, the G bits of both EntryLo0
and EntryLo1 reflect the state of the TLB G bit.

R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 95

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
Table 5-6lists the encoding of the C field of theEntryLo0andEntryLo1registers and the K0 field of theConfigregister.

Table 5-6 Cache Coherency Attributes

C[5:3] Value Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Cacheable, noncoherent, write-through, write allocate

3*, 4, 5, 6 Cacheable, noncoherent, write-back, write allocate

2*, 7 Uncached

Note: * These two values are required by the MIPS32 architecture. Only values 0, 1, 2 and 3 are used in a 4KE core. For example,
values 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Note that these values do have
meaning in other MIPS Technologies processor implementations. Refer to the MIPS32 specification for more information.
96 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

 This
erating

tly
5.2.4 Context Register (CP0 Register 4, Select 0)

TheContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array.
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the op
system loads the TLB with the missing translation from the PTE array. TheContext register duplicates some of the
information provided in theBadVAddr register but is organized in such a way that the operating system can direc
reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be written
into the BadVPN2 field of theContext register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of theContext register is not defined after an address error exception.

Figure 5-4Context Register Format

31 23 22 4 3 2 1 0

PTEBase BadVPN2 0

Table 5-7Context Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

PTEBase 31:23

This field is for use by the operating system and is
normally written with a value that allows the operating
system to use the Context Register as a pointer into the
current PTE array in memory.

R/W Undefined

BadVPN2 22:4 This field is written by hardware on a TLB miss. It
contains bits VA31:13 of the virtual address that missed. R Undefined

0 3:0 Must be written as zero; returns zero on reads. 0 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 97

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

ask
5.2.5 PageMask Register (CP0 Register 5, Select 0)

ThePageMaskregister is a read/write register used for reading from and writing to the TLB. It holds a comparison m
that sets the variable page size for each TLB entry, as shown inTable 5-9. Figure 5-5shows the format of thePageMask
register;Table 5-8 describes thePageMask register fields.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp).

Figure 5-5PageMask Register Format

31 29 28 13 12 11 10 0

0 Mask MaskX 0

Table 5-8PageMask Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Mask 28..13
The Mask field is a bit mask in which a “1” bit indicates
that the corresponding bit of the virtual address should
not participate in the TLB match.

R/W Undefined

MaskX 12..11

In Release 2 of the Architecture, the MaskX field is an
extension to the Mask field to support 1KB pages with
definition and action analogous to that of the Mask
field, defined above.

If 1KB pages are enabled (Config3SP = 1 and
PageGrainESP= 1), these bits are writable and readable,
and their values are copied to and from the TLB entry
on a TLB write or read, respectivly.

If 1KB pages are not enabled (Config3SP = 0 or
PageGrainESP = 0), these bits are not writable, return
zero on read, and the effect on the TLB entry on a write
is as if they were written with the value 2#11.

In Release 1 of the Architecture, these bits must be
written as zero, return zero on read, and have no effect
on the virtual address translation.

R/W
0

(See
Description)

0 31..29,
10..0 Ignored on write; returns zero on read. R 0

Table 5-9 Values for the Mask and MaskX1 Fields of thePageMask Register

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 121 111

1 KByte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
98 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

d of the
poten-

proces-

rdware

1K
It is implementation dependent how many of the encodings described inTable 5-9are implemented. All processors
must implement the 4KB page size. If a particular page size encoding is not implemented by a processor, a rea
PageMaskregister must return zeros in all bits that correspond to encodings that are not implemented, thereby
tially returning a value different than that written by software.

Software may determine which page sizes are supported by writing all ones to thePageMaskregister, then reading the
value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the
sor isUNDEFINED if software loads the Mask field with a value other than one of those listed inTable 5-9, even if
the hardware returns a different value on read. Hardware may depend on this requirement in implementing ha
structures.

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. PageMask12..11= PaskMaskMaskX exists only on implementations of Release 2 of the architecture and are treated as if they had the value 2#11 if
pages are not enabled (Config3SP = 0 or PageGrainESP = 0).

Table 5-9 Values for the Mask and MaskX1 Fields of thePageMask Register

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 121 111
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 99

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

nd

hed
is used.
5.2.6 PageGrain Register (CP0 Register 5, Select 1)

ThePageGrain register is a read/write register used for enabling 1KB page support. It is used for reading from a
writing to the TLB.

The contents of thePageGrainregister are not reflected in the contents of the TLB; therefore, the TLB must be flus
before any change to the PageGrain register is made. Behavior is UNDEFINED if a value other than those listed

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp).

Figure 5-6PageGrain Register Format

\

31 29 28 27 0

0 ESP 0

Table 5-10PageGrain Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

0 31:29 Reserved. Must be written as zero; returns zero on read. 0 0

ESP 28

Enables support for 1KB pages.

If this bit is a 1, the following changes occur to
coprocessor 0 registers:
• The PFN field of theEntryLo0andEntryLo1registers

holds the physical address down to bit 10 (the field is
shifted left by 2 bits from the Release 1 definition)

• The MaskX field of thePageMaskregister is writable
and is concatenated to the right of the Mask field to
form the “don’t care” mask for the TLB entry.

• The VPN2X field of theEntryHi register is writable
and bits 12..11 of the virtual address.

• The virtual address translation algorithm is modified
to reflect the smaller page size.

If Config3SP = 0, 1KB pages are not implemented, and
this bit is ignored on write and returns zero on read.

R/W 0

0 27:0 Must be written as zero; returns zero on reads. 0 0

Encoding Meaning

0 1KB page support is not enabled

1 1KB page support is enabled
100 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

e TLB
for

to the

es).
5.2.7 Wired Register (CP0 Register 6, Select 0)

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in th
as shown inFigure 5-7 on page 101. The width of the Wired field is calculated in the same manner as that described
theIndex register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR
instruction. Wired entries can be overwritten by a TLBWI instruction.

TheWired register is reset to zero by a Reset exception. Writing theWired register causes theRandom register to reset
to its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written
Wired register.

This register is only valid with a TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp cor

Figure 5-7 Wired and Random Entries in the TLB

Figure 5-8Wired Register Format

31 4 3 0

0 Wired

Table 5-11 Wired Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

0 31:4 Must be written as zero; returns zero on reads. 0 0

Wired 3:0 TLB wired boundary. R/W 0

Entry 0

Entry 10

Entry n-1

10Wired Register

W
ire

d
R

an
do

m

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 101

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

WR

doing
uction,
5.2.8 HWREna Register (CP0 Register 7, Select 0)

TheHWREna register contains a bit mask that determines which hardware registers are accessible via the RDH
instruction.

Figure 5-9 shows the format of theHWREna Register;Table 5-12 describes theHWREna register fields.

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In
so, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the instr
and returning the virtualized value. For example, if it is not desirable to provide direct access to theCountregister, access
to that register may be individually disabled and the return value can be virtualized by the operating system.

Figure 5-9 HWREna Register Format

31 4 3 0

0
0000 0000 0000 0000 0000 0000 0000 Mask

Table 5-12 HWREna Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31..4 Must be written with zero; returns zero on read 0 0

Mask 3..0

Each bit in this field enables access by the RDHWR
instruction to a particular hardware register (which
may not be an actual register). If bit ‘n’ in this field
is a 1, access is enabled to hardware register ‘n’. If
bit ‘n’ of this field is a 0, access is disabled.

See the RDHWR instruction for a list of valid
hardware registers.

R/W 0
102 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

he

g errors.
5.2.9 BadVAddr Register (CP0 Register 8, Select 0)

TheBadVAddr register is a read-only register that captures the most recent virtual address that caused one of t
following exceptions:

• Address error (AdEL or AdES)

• TLB Refill (4KEc core)

• TLB Invalid (4KEc core)

• TLB Modified (4KEc core)

TheBadVAddrregister does not capture address information for cache or bus errors, since they are not addressin

Figure 5-10BadVAddr Register Format

31 0

BadVAddr

Table 5-13BadVAddr Register Field Description

Fields

Description
Read/
Write Reset StateName Bits

BadVAddr 31:0 Bad virtual address. R Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 103

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

ired, or

ssors.
5.2.10 Count Register (CP0 Register 9, Select 0)

TheCountregister acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, ret
any forward progress is made through the pipeline. The counter increments every other clock, if the DC bit in theCause
register is 0.

TheCountregister can be written for functional or diagnostic purposes, including at reset or to synchronize proce

By writing the CountDM bit in theDebug register, it is possible to control whether theCount register continues
incrementing while the processor is in debug mode.

Figure 5-11Count Register Format

31 0

Count

Table 5-14Count Register Field Description

Fields

Description
Read/
Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined
104 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

tions.

B

dress

round
y

lds

ores).
5.2.11 EntryHi Register (CP0 Register 10, Select 0)

TheEntryHi register contains the virtual address match information used for TLB read, write, and access opera

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the VPN2 field of theEntryHi register. An implementation of Release 2 of the Architecture which supports 1K
pages also writes VA12..11into the VPN2X field of theEntryHi register. A TLBR instruction writes theEntryHi register
with the corresponding fields from the selected TLB entry. The ASID field is written by software with the current ad
space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID a
use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other memor
management software.

The VPNX2 and VPN2 fields of theEntryHi register are not defined after an address error exception and these fie
may be modified by hardware during the address error exception sequence. Software writes of theEntryHi register (via
MTC0) do not cause the implicit write of address-related fields in theBadVAddr, Context registers.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp c

Figure 5-12EntryHi Register Format

31 13 12 11 10 8 7 0

VPN2 VPN2X 0 ASID

Table 5-15EntryHi Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

VPN2 31..13

VA31..13of the virtual address (virtual page number / 2).
This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write.

R/W Undefined

VPN2X 12..11

In Release 2 of the Architecture, the VPN2X field is an
extension to the VPN2 field to support 1KB pages. These
bits are not writable by either hardware or software
unless Config3SP = 1 and PageGrainESP = 1. If enabled
for write, this field contains VA12..11 of the virtual
address and is written by hardware on a TLB exception
or on a TLB read, and is by software before a TLB write.

If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be written
with zero and returns zeros on read.

R/W 0

0 10..8 Must be written as zero; returns zero on read. 0 0

ASID 7..0

Address space identifier. This field is written by
hardware on a TLB read and by software to establish the
current ASID value for TLB write and against which
TLB references match each entry’s TLB ASID field.

R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 105

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

e
wn.

of
rupt 5
5.2.12 Compare Register (CP0 Register 11, Select 0)

TheCompareregister acts in conjunction with theCountregister to implement a timer and timer interrupt function. Th
timer interrupt is an output of the cores. TheCompareregister maintains a stable value and does not change on its o

When the value of theCountregister equals the value of theCompareregister, the SI_TimerInt pin is asserted. This pin
will remain asserted until theCompareregister is written. The SI_TimerInt pin can be fed back into the core on one
the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware inter
to set interrupt bit IP(7) in theCause register.

For diagnostic purposes, theCompare register is a read/write register. In normal use, however, theCompare register is
write-only. Writing a value to theCompare register, as a side effect, clears the timer interrupt.

Figure 5-13Compare Register Format

31 0

Compare

Table 5-16Compare Register Field Description

Fields

Description
Read/
Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined
106 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

states

essor

ble,

0

5.2.13 Status Register (CP0 Register 12, Select 0)

TheStatusregister is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
of the processor. Fields of this register combine to create operating modes for the processor. Refer toSection 3.2, "Modes
of Operation" on page 35for a discussion of operating modes, andSection 4.3, "Interrupts" on page 56for a discussion
of interrupt modes.

Interrupt Enable : Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

Operating Modes: If the DM bit in the Debug register is 1, then the processor is in debug mode; otherwise the proc
is in either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode:

• User mode: UM = 1, EXL = 0, and ERL = 0

• Kernel mode: UM = 0, or EXL = 1, or ERL = 1

Coprocessor Accessibility: TheStatusregister CU bits control coprocessor accessibility. If any coprocessor is unusa
then an instruction that accesses it generates an exception.

Figure 5-14 shows the format of theStatus register;Table 5-17 describes theStatus register fields.

Figure 5-14 Status Register Format

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1

CU3..CU0 RP FR RE R BEV TS SR NMI 0 R IM7..IM2 IM1..IM0 R UM R ERL EXL IE

IPL

Table 5-17 Status Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

CU3 31 Controls access to coprocessor 3. COP3 is not supported.
This bit cannot be written and will read as 0. R 0

CU2 30

Controls access to coprocessor 2. This bit can only be
written if coprocessor is attached to the COP2 interface.
(C2 bit in Config1 is set). This bit will read as 0 if no
coprocessor is present.

R/W 0

CU1 29 Controls access to Coprocessor 1. COP1 is not supported.
This bit cannot be written and will read as 0. R 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 107

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
CU0 28

Controls access to coprocessor 0

0: access not allowed
1: access allowed

Coprocessor 0 is always usable when the processor is
running in kernel mode, independent of the state of the
CU0 bit.

R/W Undefined

RP 27
Enables reduced power mode. The state of the RP bit is
available on the external core interface as theSI_RP
signal.

R/W 0 for Cold
Reset only.

FR 26
This bit is related to floating point registers. Since the 4KE
core does not contain a floating point unit, this bit is
ignored on write and read as zero.

R 0

RE 25

Used to enable reverse-endian memory references while
the processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

R/W Undefined

R 24:23 Reserved. This field is ignored on write and read as 0. R 0

BEV 22

Controls the location of exception vectors:

R/W 1

TS 21

TLB shutdown. Indicates that the TLB has detected a
match on multiple entries. This bit is set if a TLBWI or
TLBWR instruction is issued that would cause a TLB
shutdown condition if allowed to complete. A machine
check exception is also issued. This bit is only used in the
4KEc processor and is reserved in the 4KEp and 4KEm
processors.

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W 0

SR 20

Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W
1 for Soft
Reset; 0

otherwise

Table 5-17 Status Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianness

Encoding Meaning

0 Normal

1 Bootstrap

Encoding Meaning

0 Not Soft Reset (NMI or Reset)

1 Soft Reset
108 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
NMI 19

Indicates that the entry through the reset exception vector
was due to an NMI:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W 1 for NMI; 0
otherwise

0 18 Must be written as zero; returns zero on read. 0 0

R 17:16 Reserved. Ignored on write and read as zero. R 0

IM7..IM2 15..10

Interrupt Mask: Controls the enabling of each of the
hardware interrupts. Refer toSection 4.3, "Interrupts" on
page 56 for a complete discussion of enabled interrupts.

An interrupt is taken if interrupts are enabled and the
corresponding bits are set in both the Interrupt Mask field
of the Status register and the Interrupt Pending field of the
Cause register and the IE bit is set in the Status register.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
these bits take on a different meaning and are interpreted
as the IPL field, described below.

R/W Undefined

IPL 15..10

Interrupt Priority Level.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
this field is the encoded (0..63) value of the current IPL.
An interrupt will be signaled only if the requested IPL is
higher than this value.

If EIC interrupt mode is not enabled (Config3VEIC = 0),
these bits take on a different meaning and are interpreted
as the IM7..IM2 bits, described above.

R/W Undefined

IM1..IM0 9..8

Interrupt Mask: Controls the enabling of each of the
software interrupts. Refer to Section <<NEED
CROSSREF>> for a complete discussion of enabled
interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
these bits are writable, but have no effect on the interrupt
system.

R/W Undefined

Table 5-17 Status Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 Not NMI (Soft Reset or Reset)

1 NMI

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 109

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
R 7:5 Reserved. This field is ignored on write and read as 0. R 0

UM 4

This bit denotes the base operating mode of the processor.
SeeSection 3.2, "Modes of Operation" on page 35 for a
full discussion of operating modes. The encoding of this
bit is:

Note that the processor can also be in kernel mode if ERL
or EXL is set, regardless of the state of the UM bit.

R/W Undefined

R 3 This bit is reserved. This bit is ignored on write and read
as zero. R 0

ERL 2

Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode

• Interrupts are disabled

• The ERET instruction will use the return address held
in ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an
unmapped and uncached region. SeeChapter 3,
“Memory Management of the 4KE™ Core,” on page
35. This allows main memory to be accessed in the
presence of cache errors. The operation of the processor
is UNDEFINED if the ERL bit is set while the
processor is executing instructions from kuseg.

R/W 1

EXL 1

Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, or NMI exceptions is taken.

 When EXL is set:
• The processor is running in Kernel Mode

• Interrupts are disabled.

• TLB Refill exceptions use the general exception vector
instead of the TLB Refill vector.

• EPC, CauseBD and SRSCtl (implementations of
Release 2 of the Architecture only) will not be updated
if another exception is taken

R/W Undefined

Table 5-17 Status Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Encoding Meaning

0 Normal level

1 Error level

Encoding Meaning

0 Normal level

1 Exception level
110 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
IE 0

Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

In Release 2 of the Architecture, this bit may be modified
separately via the DI and EI instructions.

R/W Undefined

Table 5-17 Status Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 111

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

ctored
lease 1
5.2.14 IntCtl Register (CP0 Register 12, Select 1)

TheIntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including ve
interrupts and support for an external interrupt controller. This register does not exist in implementations of Re
of the Architecture.

Figure 5-15 shows the format of theIntCtl register;Table 5-18 describes theIntCtl register fields.

Figure 5-15 IntCtl Register Format

31 29 28 26 25 10 9 5 4 0

IPTI IPPCI 0 VS 0

Table 5-18 IntCtl Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

IPTI 31..29

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Timer Interrupt request is merged, and allows
software to determine whether to consider CauseTI
for a potential interrupt.

The value of this bit is set by the static input,
SI_IPTI[2:0]. This allows external logic to
communicate the specificSI_Int hardware interrupt
pin to which theSI_TimerInt signal is attached.

The value of this field is not meaningful if External
Interrupt Controller Mode is enabled. The external
interrupt controller is expected to provide this
information for that interrupt mode.

R Externally
Set

IPPCI 28..26

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Performance Counter Interrupt request is merged,
and allows software to determine whether to consider
CausePCI for a potential interrupt.

Since performance counters are not implemented on
the 4KE core (Config1PC= 0), this field is ignored on
write and returns zero on read.

R 0

0 25..10 Must be written as zero; returns zero on read. 0 0

Encoding IP bit Hardware
Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5
112 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
VS 9..5

Vector Spacing. If vectored interrupts are
implemented (as denoted by Config3VInt or
Config3VEIC), this field specifies the spacing
between vectored interrupts.

All other values are reserved. The operation of the
processor isUNDEFINED if a reserved value is
written to this field.

R/W 0

0 4..0 Must be written as zero; returns zero on read. 0 0

Table 5-18 IntCtl Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

Encoding Spacing Between
Vectors (hex)

Spacing Between
Vectors (decimal)

16#00 16#000 0

16#01 16#020 32

16#02 16#040 64

16#04 16#080 128

16#08 16#100 256

16#10 16#200 512
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 113

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
5.2.15 SRSCtl Register (CP0 Register 12, Select 2)

TheSRSCtl register controls the operation of GPR shadow sets in the processor. This register does not exist in
implementations of the architecture prior to Release 2.

Figure 5-16 shows the format of theSRSCtl register;Table 5-19 describes theSRSCtl register fields.

Figure 5-16 SRSCtl Register Format

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0
00 HSS 0

00 00 EICSS 0
00 ESS 0

00 PSS 0
00 CSS

Table 5-19 SRSCtl Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

0 31..30 Must be written as zeros; returns zero on read. 0 0

HSS 29..26

Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this
processor. A value of zero in this field indicates that
only the normal GPRs are implemented.

Possible values of this field for the 4KE processor
are:

The value in this field also represents the highest
value that can be written to the ESS, EICSS, PSS, and
CSS fields of this register, or to any of the fields of the
SRSMapregister. The operation of the processor is
UNDEFINED if a value larger than the one in this
field is written to any of these other fields.

R Preset

0 25..22 Must be written as zeros; returns zero on read. 0 0

EICSS 21..18

EIC interrupt mode shadow set. If Config3VEIC is 1
(EIC interrupt mode is enabled), this field is loaded
from the external interrupt controller for each
interrupt request and is used in place of theSRSMap
register to select the current shadow set for the
interrupt.

SeeSection 4.3.1.3, "External Interrupt Controller
Mode" on page 61 for a discussion of EIC interrupt
mode. If Config3VEIC is 0, this field must be written
as zero, and returns zero on read.

R Undefined

0 17..16 Must be written as zeros; returns zero on read. 0 0

Encoding Meaning

0 One shadow set (normal GPR set) is present.

1 Two shadow sets are present.

3 Four shadow sets are present.

2, 3-15 Reserved
114 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
ESS 15..12

Exception Shadow Set. This field specifies the
shadow set to use on entry to Kernel Mode caused by
any exception other than a vectored interrupt.

The operation of the processor isUNDEFINED if
software writes a value into this field that is greater
than the value in the HSS field.

R/W 0

0 11..10 Must be written as zeros; returns zero on read. 0 0

PSS 9..6

Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the
next paragraph, this field is copied from the CSS field
when an exception or interrupt occurs. An ERET
instruction copies this value back into the CSS field
if StatusBEV = 0.

This field is not updated on any exception which sets
StatusERL to 1 (i.e., Reset, Soft Reset, NMI, cache
error), an entry into EJTAG Debug mode, or any
exception or interrupt that occurs with StatusEXL = 1,
or StatusBEV = 1. This field is not updated on an
exception that occurs while StatusERL = 1.

The operation of the processor isUNDEFINED if
software writes a value into this field that is greater
than the value in the HSS field.

R/W 0

0 5..4 Must be written as zeros; returns zero on read. 0 0

CSS 3..0

Current Shadow Set. If GPR shadow registers are
implemented, this field is the number of the current
GPR set. With the exclusions noted in the next
paragraph, this field is updated with a new value on
any interrupt or exception, and restored from the PSS
field on an ERET.Table 5-20 describes the various
sources from which the CSS field is updated on an
exception or interrupt.

This field is not updated on any exception which sets
StatusERL to 1 (i.e., Reset, Soft Reset, NMI, cache
error), an entry into EJTAG Debug mode, or any
exception or interrupt that occurs with StatusEXL = 1,
or StatusBEV = 1. Neither is it updated on an ERET
with StatusERL = 1 or StatusBEV = 1. This field is not
updated on an exception that occurs while StatusERL
= 1.

 The value of CSS can be changed directly by
software only by writing the PSS field and executing
an ERET instruction.

R 0

Table 5-20 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored
Interrupt CauseIV = 0 SRSCtlESS Treat as exception

Table 5-19 SRSCtl Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 115

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
Vectored Interrupt
CauseIV = 1 and

Config3VEIC = 0 and
Config3VInt = 1

SRSMapVECTNUM

Source is internal map register.

(for VECTNUM seeTable 4-3)

Vectored EIC
Interrupt

CauseIV = 1 and
Config3VEIC = 1 SRSCtlEICSS

Source is external interrupt
controller.

Table 5-20 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment
116 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

mber
n, or a

he

 number
dow
5.2.16 SRSMap Register (CP0 Register 12, Select 3)

TheSRSMapregister contains 8 4-bit fields that provide the mapping from an vector number to the shadow set nu
to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exceptio
non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register areUNPREDICTABLE .

The operation of the processor isUNDEFINED if a value is written to any field in this register that is greater than t
value of SRSCtlHSS.

TheSRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set
can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single sha
register set number.

Figure 5-17 shows the format of theSRSMap register;Table 5-21 describes theSRSMap register fields.

Figure 5-17 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 5-21 SRSMap Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

SSV7 31..28 Shadow register set number for Vector Number 7 R/W 0

SSV6 27..24 Shadow register set number for Vector Number 6 R/W 0

SSV5 23..20 Shadow register set number for Vector Number 5 R/W 0

SSV4 19..16 Shadow register set number for Vector Number 4 R/W 0

SSV3 15..12 Shadow register set number for Vector Number 3 R/W 0

SSV2 11..8 Shadow register set number for Vector Number 2 R/W 0

SSV1 7..4 Shadow register set number for Vector Number 1 R/W 0

SSV0 3..0 Shadow register set number for Vector Number 0 R/W 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 117

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

ftware

n

5.2.17 Cause Register (CP0 Register 13, Select 0)

TheCause register primarily describes the cause of the most recent exception. In addition, fields also control so
interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC, IV, and
WP fields, all fields in theCause register are read-only. Release 2 of the Architecture added optional support for a
External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt Priority
Level (RIPL).

Figure 5-18 shows the format of theCause register;Table 5-22 describes theCause register fields.

Figure 5-18 Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP 0 IP7..IP2 IP1..IP0 0 Exc Code 0

RIPL

Table 5-22 Cause Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

BD 31

Indicates whether the last exception taken occurred in
a branch delay slot:

The processor updates BD only if StatusEXL was zero
when the exception occurred.

R Undefined

TI 30

Timer Interrupt. This bit denotes whether a timer
interrupt is pending (analogous to the IP bits for other
interrupt types):

The state of the TI bit is available on the external core
interface as theSI_TimerInt signal

R Undefined

CE 29..28

Coprocessor unit number referenced when a
Coprocessor Unusable exception is taken. This field
is loaded by hardware on every exception, but is
UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

R Undefined

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending
118 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
DC 27

DisableCount register. In some power-sensitive
applications, theCountregister is not used and is the
source of meaningful power dissipation. This bit
allows theCount register to be stopped in such
situations.

R/W 0

PCI 26

Performance Counter Interrupt. In an
implementation of Release 2 of the Architecture, this
bit denotes whether a performance counter interrupt
is pending (analogous to the IP bits for other interrupt
types):

Since performance counters are not implemented
(Config1PC= 0), this bit must be written as zero and
returns zero on read.

R 0

IV 23

Indicates whether an interrupt exception uses the
general exception vector or a special interrupt vector:

In implementations of Release 2 of the architecture,
if the CauseIV is 1 and StatusBEV is 0, the special
interrupt vector represents the base of the vectored
interrupt table.

R/W Undefined

WP 22

Indicates that a watch exception was deferred
because StatusEXL or StatusERL were a one at the
time the watch exception was detected. This bit both
indicates that the watch exception was deferred, and
causes the exception to be initiated once StatusEXL
and StatusERL are both zero. As such, software must
clear this bit as part of the watch exception handler to
prevent a watch exception loop.

Software should not write a 1 to this bit when its
value is a 0, thereby causing a 0-to-1 transition. If
such a transition is caused by software, it is
UNPREDICTABLE whether hardware ignores the
write, accepts the write with no side effects, or
accepts the write and initiates a watch exception once
StatusEXL and StatusERL are both zero.

R/W Undefined

Table 5-22 Cause Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 Enable counting ofCount register

1 Disable counting ofCount register

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Encoding Meaning

0 Use the general exception vector (16#180)

1 Use the special interrupt vector (16#200)
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 119

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
IP7..IP2 15..10

Indicates an interrupt is pending:

If EIC interrupt mode is not enabled (Config3VEIC =
0), timer interrupts are combined in a
system-dependent way with any hardware interrupt.
If EIC interrupt mode is enabled (Config3VEIC = 1),
these bits take on a different meaning and are
interpreted as the RIPL field, described below.

SeeSection 4.3, "Interrupts" on page 56for a general
description of interrupt processing.

R Undefined

RIPL 15..10

Requested Interrupt Priority Level.

If EIC interrupt mode is enabled (Config3VEIC = 1),
this field is the encoded (0..63) value of the requested
interrupt. A value of zero indicates that no interrupt
is requested.

If EIC interrupt mode is not enabled (Config3VEIC =
0), these bits take on a different meaning and are
interpreted as the IP7..IP2 bits, described above.

R Undefined

IP1..IP0 9..8

Controls the request for software interrupts:

These bits are exported to an external interrupt
controller for prioritization in EIC interrupt mode
with other interrupt sources. The state of these bits is
available on the external core interface as the
SI_SWInt[1:0] bus.

R/W Undefined

ExcCode 6..2 Exception code - seeTable 5-23 R Undefined

0
25..24,
21..16,
7, 1..0

Must be written as zero; returns zero on read. 0 0

Table 5-22 Cause Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0
120 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
Table 5-23 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 16#00 Int Interrupt

1 16#01 Mod TLB modification exception (4KEc core)

2 16#02 TLBL TLB exception (load or instruction fetch) (4KEc core)

3 16#03 TLBS TLB exception (store) (4KEc core)

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

14-15 16#0e-16#0f - Reserved

16 16#10 IS1 Implementation-Specific Exception 1 (COP2)

17 16#11 IS2 Implementation-Specific Exception 2(COP2)

18 16#12 C2E Coprocessor 2 exceptions

19-22 16#13-16#16 - Reserved

23 16#17 WATCH Reference to WatchHi/WatchLo address

24 16#18 MCheck Machine check

25-31 16#19-16#1f - Reserved
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 121

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

mes

uction

in the

 to the

eption

he
bit of
5.2.18 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resu
after an exception has been serviced. All bits of theEPC register are significant and must be writable.

For synchronous (precise) exceptions, theEPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing instr
is in a branch delay slot and theBranch Delay bit in theCause register is set.

On new exceptions, the processor does not write to theEPC register when the EXL bit in theStatus register is set,
however, the register can still be written via the MTC0 instruction.

In processors that implement the MIPS16 ASE, a read of the EPC register (via MFC0) returns the following value
destination GPR:

GPR[rt] ← ExceptionPC 31..1 || ISAMode 0

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field and written
GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes that value to the exc
PC and the ISAMode field, as follows

ExceptionPC ← GPR[rt] 31..1 || 0
ISAMode ← 2#0 || GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of t
exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower
the GPR.

Figure 5-19EPC Register Format

31 0

EPC

Table 5-24EPC Register Field Description

Fields

Description
Read/
Write Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined
122 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
5.2.19 Processor Identification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 5-20PRId Register Format

31 24 23 16 15 8 7 5 4 2 1 0

R Company ID Processor ID Revision

Table 5-25PRId Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

R 31:24 Reserved. Must be ignored on write and read as zero R 0

Company
ID 23:16

Identifies the company that designed or manufactured the
processor. In the 4KE this field contains a value of 1 to
indicate MIPS Technologies, Inc.

R 1

Processor
ID 15:8

Identifies the type of processor. This field allows software
to distinguish between the various types of MIPS
Technologies processors.

R

4KEc
core - 0x90

4KEm &
4KEp cores -

0x91

Revision 7:0

Specifies the revision number of the processor. This field
allows software to distinguish between one revision and
another of the same processor type.

This field is broken up into the following three subfields

R Preset

Major
Revision 7:5 This number is increased on major revisions of the

processor core R Preset

Minor
Revision 4:2 This number is increased on each incremental revision of

the processor and reset on each new major revision R Preset

Patch Level 1:0 If a patch is made to modify an older revision of the
processor, this field will be incremented R Preset
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 123

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

tus
 in a

stem,
eneous
hen

he

g0

d at any
5.2.20 EBase Register (CP0 Register 15, Select 1)

TheEBase register is a read/write register containing the base address of the exception vectors used when StaBEV
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors
multi-processor system.

TheEBase register provides the ability for software to identify the specific processor within a multi-processor sy
and allows the exception vectors for each processor to be different, especially in systems composed of heterog
processors. Bits 31..12 of theEBaseregister are concatenated with zeros to form the base of the exception vectors w
StatusBEV is 0. The exception vector base address comes from the fixed defaults (seeSection 4.5, "Exception Vector
Locations" on page 66) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits 31..12 of t
EBase register initialize the exception base register to16#8000.0000 , providing backward compatibility with
Release 1 implementations.

Bits 31..30 of theEBase Register are fixed with the value2#10 to force the exception base address to be in the kse
or kseg1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation of
the processor isUNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31..20 with the Exception Base field allows the base address of the exception vectors to be place
4KBbyte page boundary.

Figure 5-21 shows the format of theEBase Register;Table 5-26 describes theEBase register fields.

Figure 5-21 EBase Register Format

31 30 29 12 11 10 9 0

1 0 Exception Base 0 0 CPUNum

Table 5-26 EBase Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

1 31 This bit is ignored on write and returns one on read. R 1

0 30 This bit is ignored on write and returns zero on read. R 0

Exception
Base 29..12

In conjunction with bits 31..30, this field specifies
the base address of the exception vectors when
StatusBEV is zero.

R/W 0

0 11..10 Must be written as zero; returns zero on read. 0 0

CPUNum 9..0

This field specifies the number of the CPU in a
multi-processor system and can be used by software
to distinguish a particular processor from the others.
The value in this field is set by the
SI_CPUNum[9:0] static input pins to the core. In a
single processor system, this value should be set to
zero.

R Externally
Set
124 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

ust be
5.2.21 Config Register (CP0 Register 16, Select 0)

TheConfigregister specifies various configuration and capabilities information. Most of the fields in theConfigregister
are initialized by hardware during the Reset exception process, or are constant. The K0, KU, and K23 fields m
initialized by software in the Reset exception handler, if the reset value is not desired.

Figure 5-22Config Register Format — Select 0

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU ISP DSP UDI SB MDU 0 MM BM BE AT AR MT 0 K0

Figure 5-23Config Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config1 register. R 1

K23 30:28

This field controls the cacheability of the kseg2 and kseg3
address segments in FM implementations. This field is
valid in the 4KEp and 4KEm processor and is reserved in
the 4KEc processor.

Refer toTable 5-27 for the field encoding.

FM: R/W

TLB: R

FM: 010

TLB: 000

KU 27:25

This field controls the cacheability of the kuseg and useg
address segments in FM implementations. This field is
valid in the 4KEp and 4KEm processor and is reserved in
the 4KEc processor.

Refer toTable 5-27 for the field encoding.

FM: R/W

TLB: R

FM: 010

TLB: 000

ISP 24

Indicates whether Instruction ScratchPad RAM is present.
Set by theISP_Present static input pin, if scratchpad was
enabled when the core was built.

0 = No Instruction ScratchPad is present
1 = Instruction ScratchPad is present

R Externally Set

DSP 23

Indicates whether Data ScratchPad RAM is present. Set by
theDSP_Present static input pin, if scratchpad was
enabled when the core was built.

0 = No Data ScratchPad is present
1 = Data ScratchPad is present

R Externally Set

UDI 22

This bit indicates that CorExtend User Defined
Instructions have been implemented.

0 = No User Defined Instructions are implemented
1 = User Defined Instructions are implemented

R Preset

SB 21

Indicates whether SimpleBE bus mode is enabled. Set via
SI_SimpleBE[0] input pin.

0 = No reserved byte enables on EC interface
1 = Only simple byte enables allowed on EC interface

R Externally Set

MDU 20

This bit indicates the type of Multiply/Divide Unit present.

0 = Fast, high-performance MDU (4KEc and 4KEm cores)
1 = Iterative, area-efficient MDU (4KEp cores)

R Preset
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 125

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
0 19 Must be written as 0. Returns zero on reads. 0 0

MM 18:17

This bit indicates whether merging is enabled in the 32
byte collapsing write buffer. Set viaSI_MergeMode[1:0]
input pins:

00 = No Merging
10 = Merging allowed
x1 = Reserved

R Externally Set

BM 16

Burst order. Set viaEB_SBlock input pin.

0: Sequential
1: SubBlock

R Externally Set

BE 15

Indicates the endian mode in which the processor is
running. Set viaSI_Endian input pin.

0: Little endian
1: Big endian

R Externally Set

AT 14:13 Architecture type implemented by the processor. This field
is always 00 to indicate the MIPS32 architecture. R 00

AR 12:10

Architecture revision level. This field is always 001 to
indicate MIPS32 Release 2.

0: Release 1
1: Release 2
2-7: Reserved

R 001

MT 9:7

MMU Type:

1: Standard TLB (4KEc core)
3: Fixed Mapping(4KEp, 4KEm cores)
0, 2, 4-7: Reserved

R Preset

0 6:3 Must be written as zeros; returns zeros on reads. 0 0

K0 2:0 Kseg0 coherency algorithm. Refer toTable 5-27 for the
field encoding. R/W 010

Table 5-27 Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Cacheable, noncoherent, write-through, write allocate

3*, 4, 5, 6 Cacheable, noncoherent, write-back, write allocate

2*, 7 Uncached

Note: * These two values are required by the MIPS32 architecture. In the 4KE processor core, only values 0, 1, 2 and 3 are used.
For example, values 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Note that these
values do have meaning in other MIPS Technologies processor implementations. Refer to the MIPS32 specification for more
information.

Figure 5-23Config Register Field Descriptions (Continued)

Fields

Description
Read/W

rite Reset StateName Bit(s)
126 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

ent

ine size,
5.2.22 Config1 Register (CP0 Register 16, Select 1)

TheConfig1 register is an adjunct to theConfig register and encodes additional information about capabilities pres
on the core. All fields in theConfig1 register are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the l
and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.

Figure 5-24Config1 Register Format — Select 1

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 5-28Config1 Register Field Descriptions — Select 1

Fields

Description
Read/
Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config2 register. R 1

MMU Size 30:25

This field contains the number of entries in the TLB minus
one. The field is read as 15 decimal in the 4KEc core. The
field is read as 0 decimal in the 4KEp and 4KEm cores,
since no TLB is present.

R Preset

IS 24:22

This field contains the number of instruction cache sets per
way. Five options are available in the 4KE core. All others
values are reserved:

0x0: 64
0x1: 128
0x2: 256
0x3: 512
0x4: 1024
0x5 - 0x7: Reserved

R Preset

IL 21:19

This field contains the instruction cache line size. If an
instruction cache is present, it must contain a fixed line size
of 16 bytes.

0x0: No Icache present
0x3: 16 bytes
0x1, 0x2, 0x4 - 0x7: Reserved

R Preset

IA 18:16

This field contains the level of instruction cache
associativity.

0x0: Direct mapped
0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

R Preset
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 127

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
DS 15:13

This field contains the number of data cache sets per way.

0x0: 64
0x1: 128
0x2: 256
0x3: 512
0x4: 1024
0x5 - 0x7: Reserved

R Preset

DL 12:10

This field contains the data cache line size. If a data cache
is present, then it must contain a line size of 16 bytes.

0x0: No Dcache present
0x3: 16 bytes
0x1, 0x2, 0x4 - 0x7: Reserved

R Preset

DA 9:7

This field contains the type of set associativity for the data
cache.

0x0: Direct mapped
0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

R Preset

C2 6

Coprocessor 2 present.

0: No coprocessor is attached to the COP2 interface
1: A coprocessor is attached to the COP2 interface

If the Cop2 interface logic is not implemented, this bit will
read 0.

R Preset

MD 5 MDMX implemented. This bit always reads as 0 because
MDMX is not supported. R 0

PC 4
Performance Counter registers implemented. Always a 0
since the 4KE core does not contain Performance
Counters.

R 0

WR 3

Watch registers implemented.

0: No Watch registers are present
1: One or more Watch registers are present R Preset

CA 2

Code compression (MIPS16) implemented.

0: No MIPS16 present
1: MIPS16 is implemented

R Preset

EP 1 EJTAG present: This bit is always set to indicate that the
core implements EJTAG. R 1

FP 0 FPU implemented. This bit is always zero since the core
does not contain a floating point unit. R 0

Table 5-28Config1 Register Field Descriptions — Select 1 (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)
128 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

n.
caches
5.2.23 Config2 Register (CP0 Register 16, Select 2)

TheConfig2 register is an adjunct to theConfig register and is reserved to encode additional capabilities informatio
Config2is allocated for showing the configuration of level 2/3 caches. These fields are reset to 0 because L2/L3
are not supported by the 4KE core. All fields in theConfig2 register are read-only.

Figure 5-25Config2 Register Format — Select 2

31 30 0

M 0

Table 5-29Config1 Register Field Descriptions — Select 1

Fields

Description
Read/
Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config3 register. R 1

0 30:0 These bits are reserved. R 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 129

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
5.2.24 Config3 Register (CP0 Register 16, Select 3)

TheConfig3 register encodes additional capabilities. All fields in theConfig3 register are read-only.

Figure 5-26 shows the format of theConfig3 register;Table 5-30 describes theConfig3 register fields.

Figure 5-26 Config3 Register Format

31 30 7 6 5 4 3 2 1 0

M 0
000 0000 0000 0000 0000 0000 0 VEIC VInt SP 0 SM TL

Table 5-30 Config3 Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

M 31
This bit is reserved to indicate that a Config4 register is
present. With the current architectural definition, this
bit should always read as a 0.

R 0

0 30:7,3:2 Must be written as zeros; returns zeros on read 0 0

VEIC 6

Support for an external interrupt controller is
implemented.

The value of this bit is set by the static input,
SI_EICPresent. This allows external logic to
communicate whether an external interrupt controller
is attached to the processor or not.

R Externally
Set

VInt 5

Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

On the 4KE core, this bit is always a 1 since vectored
interrupts are implemented.

R 1

SP 4

Small (1KByte) page support is implemented, and the
PageGrain register exists. This bit will always read as
0 on the 4KEm and 4KEp cores, since no TLB is
present.

R Preset

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

Encoding Meaning

0 Small page support is not implemented

1 Small page support is implemented
130 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
SM 1

SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented. Since
SmartMIPS is not present on the 4KE core, this bit will
always be 0.

R 0

TL 0

Trace Logic implemented. This bit indicates whether
PC or data trace is implemented.

R Preset

Table 5-30 Config3 Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

Encoding Meaning

0 Trace logic is not implemented

1 Trace logic is implemented
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 131

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

gister
5.2.25 Load Linked Address (CP0 Register 17, Select 0)

TheLLAddr register contains the physical address read by the most recent Load Linked (LL) instruction. This re
is for diagnostic purposes only, and serves no function during normal operation.

Figure 5-27LLAddr Register Format

31 28 27 0

0 PAddr[31:4]

Table 5-31LLAddr Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

0 31:28 Must be written as zeros; returns zeros on reads. 0 0

PAddr[31:4] 27:0 This field encodes the physical address read by the most
recent Load Linked instruction. R Undefined
132 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

atch
te some
 in the
th

match.
5.2.26 WatchLo Register (CP0 Register 18, Select 0-7)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are both zero
Statusregister. If either bit is a one, the WP bit is set in theCauseregister, and the watch exception is deferred until bo
the EXL and ERL bits are zero.

The 4KE core can be configured with 0 to 8 Watch register pairs

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to

Figure 5-28WatchLo Register Format

31 3 2 1 0

VAddr I R W

Table 5-32WatchLo Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

VAddr 31:3
This field specifies the virtual address to match. Note that
this is a doubleword address, since bits [2:0] are used to
control the type of match.

R/W Undefined

I 2 If this bit is set, watch exceptions are enabled for
instruction fetches that match the address. R/W 0.

R 1 If this bit is set, watch exceptions are enabled for loads that
match the address. R/W 0

W 0 If this bit is set, watch exceptions are enabled for stores that
match the address. R/W 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 133

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

atch
te some

th

s the
ch the
5.2.27 WatchHi Register (CP0 Register 19, Select 0-7)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, then the WP bit is set in theCauseregister, and the watch exception is deferred until bo
the EXL and ERL bits are zero.

TheWatchHiregister contains information that qualifies the virtual address specified in theWatchLoregister: an ASID,
a Global (G) bit, and an optional address mask. If the G bit is 1, then any virtual address reference that matche
specified address will cause a watch exception. If the G bit is a 0, only those virtual address references for whi
ASID value in theWatchHi register matches the ASID value in theEntryHi register cause a watch exception. The
optional mask field provides address masking to qualify the address specified inWatchLo.

Figure 5-29WatchHi Register Format

31 30 29 24 23 16 15 12 11 3 2 0

0 G 0 ASID 0 Mask 0

Table 5-33WatchHi Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

M 31 Indicates whether additional Watch register pairs beyond
this one are present or not R Preset

G 30

If this bit is one, any address that matches that specified in
theWatchLoregister causes a watch exception. If this bit
is zero, the ASID field of theWatchHiregister must match
the ASID field of theEntryHi register to cause a watch
exception.

R/W Undefined

0 29:24 Must be written as zeros; returns zeros on read. 0 0

ASID 23:16 ASID value which is required to match that in theEntryHi
register if the G bit is zero in theWatchHi register. R/W Undefined

0 15:12 Must be written as zero; returns zero on read. 0 0

Mask 11:3

Bit mask that qualifies the address in theWatchLo
register. Any bit in this field that is a set inhibits the
corresponding address bit from participating in the
address match.

R/W Undefined

I 2

This bit is set by hardware when an instruction fetch
condition matches the values in this watch register pair.
When set, the bit remains set until cleared by software,
which is accomplished by writing a 1 to the bit.

W1C Undefined

R 1

This bit is set by hardware when a load condition matches
the values in this watch register pair. When set, the bit
remains set until cleared by software, which is
accomplished by writing a 1 to the bit.

W1C Undefined

W 0

This bit is set by hardware when a store condition matches
the values in this watch register pair. When set, the bit
remains set until cleared by software, which is
accomplished by writing a 1 to the bit.

W1C Undefined
134 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 135

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

g
ad only

already

fields

 below:

des

 e.g.
5.2.28 Debug Register (CP0 Register 23, Select 0)

TheDebug register is used to control the debug exception and provide information about the cause of the debu
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The re
information bits are updated every time the debug exception is taken or when a normal exception is taken when
in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and
are UNPREDICTABLE. Operation of the processor is UNDEFINED if theDebug register is written from non-debug
mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown

• DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug mo

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined,
EJTAGver and DM.

Figure 5-30Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19

DBD DM NoDCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI DDBSImpr

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBLImpr Ver DExcCode NoSSt SSt R DINT DIB DDBS DDBL DBp DSS

Table 5-34Debug Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

DBD 31

Indicates whether the last debug exception or exception
in debug mode, occurred in a branch delay slot:

0: Not in delay slot
1: In delay slot

R Undefined

DM 30

Indicates that the processor is operating in debug mode:

0: Processor is operating in non-debug mode
1: Processor is operating in debug mode

R 0

NoDCR 29

Indicates whether the dseg memory segment is present
and the Debug Control Register is accessible:

0: dseg is present
1: No dseg present

R 0
136 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
LSNM 28

Controls access of load/store between dseg and main
memory:

0: Load/stores in dseg address range goes to dseg.
1: Load/stores in dseg address range goes to main
memory.

R/W 0

Doze 27

Indicates that the processor was in any kind of low
power mode when a debug exception occurred:

0: Processor not in low power mode when debug
exception occurred
1: Processor in low power mode when debug exception
occurred

R Undefined

Halt 26

Indicates that the internal system bus clock was stopped
when the debug exception occurred:

0: Internal system bus clock stopped
1: Internal system bus clock running

R Undefined

CountDM 25

Indicates the Count register behavior in debug mode.

0: Count register stopped in debug mode
1: Count register is running in debug mode

R/W 1

IBusEP 24

Instruction fetch Bus Error exception Pending. Set
when an instruction fetch bus error event occurs or if a
1 is written to the bit by software. Cleared when a Bus
Error exception on instruction fetch is taken by the
processor, and by reset. If IBusEP is set when IEXI is
cleared, a Bus Error exception on instruction fetch is
taken by the processor, and IBusEP is cleared.

R/W1 0

MCheckP 23
Indicates that an imprecise Machine Check exception is
pending. All Machine Check exceptions are precise on
the 4KE processors so this bit will always read as 0.

R 0

CacheEP 22
Indicates that an imprecise Cache Error is pending.
Cache Errors cannot be taken by the 4KE cores so this
bit will always read as 0

R 0

DBusEP 21

Data access Bus Error exception Pending. Covers
imprecise bus errors on data access, similar to behavior
of IBusEP for imprecise bus errors on an instruction
fetch.

R/W1 0

IEXI 20

Imprecise Error eXception Inhibit controls exceptions
taken due to imprecise error indications. Set when the
processor takes a debug exception or exception in
debug mode. Cleared by execution of the DERET
instruction; otherwise modifiable by debug mode
software. When IEXI is set, the imprecise error
exception from a bus error on an instruction fetch or
data access, cache error, or machine check is inhibited
and deferred until the bit is cleared.

R/W 0

DDBSImpr 19
Indicates that an imprecise Debug Data Break Store
exception was taken. All data breaks are precise on the
4KE cores, so this bit will always read as 0.

R 0

DDBLImpr 18
Indicates that an imprecise Debug Data Break Load
exception was taken. All data breaks are precise on the
4KE cores, so this bit will always read as 0.

R 0

Table 5-34Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 137

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
Ver 17:15 EJTAG version. R 010

DExcCode 14:10

Indicates the cause of the latest exception in debug
mode. The field is encoded as the ExcCode field in the
Cause register for those normal exceptions that may
occur in debug mode.

Value is undefined after a debug exception.

R Undefined

NoSST 9

Indicates whether the single-step feature controllable
by the SSt bit is available in this implementation:

0: Single-step feature available
1: No single-step feature available

R 0

SSt 8

Controls if debug single step exception is enabled:

0: No debug single-step exception enabled
1: Debug single step exception enabled

R/W 0

R 7:6 Reserved. Must be written as zeros; returns zeros on
reads. R 0

DINT 5

Indicates that a debug interrupt exception occurred.
Cleared on exception in debug mode.

0: No debug interrupt exception
1: Debug interrupt exception

R Undefined

DIB 4

Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.

0: No debug instruction exception
1: Debug instruction exception

R Undefined

DDBS 3

Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.

0: No debug data exception on a store
1: Debug instruction exception on a store

R Undefined

DDBL 2

Indicates that a debug data break exception occurred on
a load. Cleared on exception in debug mode.

0: No debug data exception on a load
1: Debug instruction exception on a load

R Undefined

DBp 1

Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.

0: No debug software breakpoint exception
1: Debug software breakpoint exception

R Undefined

DSS 0

Indicates that a debug single-step exception occurred.
Cleared on exception in debug mode.

0: No debug single-step exception
1: Debug single-step exception

R Undefined

Table 5-34Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)
138 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

lds
5.2.29 Trace Control Register (CP0 Register 23, Select 1)

TheTraceControlregister configuration is shown below. Note the special behavior of the ASID_M, ASID, and G fie
for the 4KEm and 4KEp processors.

This register is only implemented if the EJTAG Trace capability is present.

Figure 5-31Trace Control Register Format

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 1 0

TS UT 0 TB IO D E K S U ASID_M ASID G Mode On

Table 5-35TraceControl Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

TS 31

The trace select bit is used to select between the
hardware and the software trace control bits. A value of
zero selects the external hardware trace block signals,
and a value of one selects the trace control bits in this
software control register.

R/W 0

UT 30

This bit is used to indicate the type of user-triggered
trace record. A value of zero implies a user type 1 and
a value of one implies a user type 2.

The actual triggering of a user trace record happens on
a write to theUserTraceData register.

R/W Undefined

0 29:28 Reserved for future use; Must be written as zero;
returns zero on read. 0 0

TB 27

Trace All Branch. When set to one, this tells the
processor to trace the PC value for all taken branches,
not just the ones whose branch target address is
statically unpredictable.

R/W Undefined

IO 26

Inhibit Overflow. This signal is used to indicate to the
core trace logic that slow but complete tracing is
desired. When set to one, the core tracing logic does not
allow a FIFO overflow or discard trace data. This is
achieved by stalling the pipeline when the FIFO is
nearly full, so that no trace records are ever lost.

R/W Undefined

D 25

When set to one, this enables tracing in Debug Mode
(seeSection 9.7.1, "Processor Modes" on page 209).
For trace to be enabled in Debug mode, the On bit must
be one, and either the G bit must be one, or the current
process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Debug Mode,
irrespective of other bits.

R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 139

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core
E 24

When set to one, this enables tracing in Exception
Mode (seeSection 9.7.1, "Processor Modes" on page
209). For trace to be enabled in Exception mode, the On
bit must be one, and either the G bit must be one, or the
current process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Exception Mode,
irrespective of other bits.

R/W Undefined

K 23

When set to one, this enables tracing in Kernel Mode
(seeSection 9.7.1, "Processor Modes" on page 209).
For trace to be enabled in Kernel mode, the On bit must
be one, and either the G bit must be one, or the current
process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Kernel Mode,
irrespective of other bits.

R/W Undefined

0 22 This bit is reserved. Must be written as zero; returns
zero on read. 0 0

U 21

When set to one, this enables tracing in User Mode (see
Section 9.7.1, "Processor Modes" on page 209). For
trace to be enabled in User mode, the On bit must be
one, and either the G bit must be one, or the current
process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in User Mode,
irrespective of other bits.

R/W Undefined

ASID_M 20:13

This is a mask value applied to the ASID comparison
(done when the G bit is zero). A “1” in any bit in this
field inhibits the corresponding ASID bit from
participating in the match. As such, a value of zero in
this field compares all bits of ASID. Note that the
ability to mask the ASID value is not available in the
hardware signal bit; it is only available via the software
control register.

In the 4KEm and 4KEp cores where ASID is not
supported, this field is ignored on write and returns zero
on read.

R/W Undefined

ASID 12:5

The ASID field to match when the G bit is zero. When
the G bit is one, this field is ignored.

In the 4KEm and 4KEp cores where ASID is not
supported, this field is ignored on write and returns zero
on read.

R/W Undefined

G 4

Global bit. When set to one, tracing is to be enabled for
all processes, provided that other enabling functions
(like U, S, etc.,) are also true.

In the 4KEm and 4KEp cores where ASID is not
supported, this field is ignored on write and returns 1 on
read. This causes all match equations to work correctly
in the absence of an ASID.

R/W Undefined

Table 5-35TraceControl Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
140 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
Mode 3:1

These three bits control the trace mode function.

TheTraceControl2ValidModesfield determines which of
these encodings are supported by the processor. The
operation of the processor isUNPREDICTABLE if
this field is set to a value which is not supported by the
processor.

R/W Undefined

On 0

This is the master trace enable switch in software
control. When zero, tracing is always disabled. When
set to one, tracing is enabled whenever the other
enabling functions are also true.

R/W 0

Table 5-35TraceControl Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

Mode Trace Mode

000 Trace PC

001 Trace PC and load address

010 Trace PC and store address

011 Trace PC and both load/store addresses

100 Trace PC and load data

101 Trace PC and load address and data

110 Trace PC and store address and data

111 Trace PC and both load/store address and data
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 141

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

d from
e
s.
5.2.30 Trace Control2 Register (CP0 Register 23, Select 2)

TheTraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2register are read-only, but have a reset state of “Undefined”. This is because these values are loade
the Trace Control Block (TCB) (seeSection 9.9, "Trace Control Block (TCB) Registers (hardware control)" on pag
213). As such, these fields in theTraceControl2 register will not have valid values until the TCB asserts these value

This register is only implemented if the EJTAG Trace capability is present.

Figure 5-32Trace Control2 Register Format

31 7 6 5 4 3 2 0

0 Valid
Modes

TBI TBU SyP

Table 5-36TraceControl2 Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:5 Reserved for future use; Must be written as zero;
returns zero on read. 0 0

ValidModes 6:5

This field specifies the type of tracing that is supported
by the processor, as follows:

R 10

TBI 4

This bit indicates how many trace buffers are
implemented by the TCB, as follows:

R
Per
implementati
on

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and
store data

11 Reserved

Encoding Meaning

0
Only one trace buffer is implemented, and
the TBU bit of this register indicates which
trace buffer is implemented

1

Both on-chip and off-chip trace buffers are
implemented by the TCB and the TBU bit of
this register indicates to which trace buffer
the trace is currently written.
142 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions
TBU 3

This bit denotes to which trace buffer the trace is
currently being written and is used to select the
appropriate interpretation of theTraceControl2SyP
field.

R Undefined

SyP 2:0

Used to indicate the synchronization period.

The period (in cycles) between which the periodic
synchronization information is to be sent is defined as
shown below, for both when the trace buffer is on-chip
and off-chip.

The “On-chip” column value is used when the trace
data is being written to an on-chip trace buffer (e.g,
TraceControl2TBU = 0). Conversely, the “Off-chip”
column is used when the trace data is being written to
an off-chip trace buffer (e.g,TraceControl2TBU = 1).

R Undefined

Table 5-36TraceControl2 Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0
Trace data is being sent to an on-chip trace
buffer

1
Trace Data is being sent to an off-chip trace
buffer

SyP On-chip Off-chip

000 22 27

001 23 28

010 24 29

011 25 210

100 26 211

101 27 212

110 28 213

111 29 214
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 143

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

r

5.2.31 User Trace Data Register (CP0 Register 23, Select 3)

A software write to any bits in theUserTraceDataregister will trigger a trace record to be written indicating a type 1 o
type 2 user format. The type is based on the UT bit in theTraceControl register. This register cannot be written in
consecutive cycles. The trace output data is UNPREDICTABLE if this register is written in consecutive cycles.

This register is only implemented if the EJTAG Trace capability is present.

Figure 5-33User Trace Data Register Format

\

31 0

Data

Table 5-37UserTraceData Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Data 31:0
Software readable/writable data. When written, this
triggers a user format trace record out of the PDtrace
interface that transmits the Data field to trace memory.

R/W 0
144 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

kpoint
5.2.32 TraceBPC Register (CP0 Register 23, Select 4)

This register is used to control start and stop of tracing using an EJTAG Hardware breakpoint. The Hardware brea
would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the EJTAG Trace capability are present.

Figure 5-34Trace BPC Register Format

31 30 18 17 16 15 14 4 3 0

DE 0 DBPOn IE 0 IBPOn

Table 5-38TraceBPC Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

DE 31

Used to specify whether the trigger signal from EJTAG
data breakpoint should trigger tracing functions or not:

0: disables trigger signals from data breakpoints

1: enables trigger signals from data breakpoints

R/W 0

0 30:18 Reserved 0 0

DBPOn 30:16

Each of the 2 bits corresponds to the 2 possible EJTAG
hardware data breakpoints that may be implemented.
For example, bit 16 corresponds to the first data
breakpoint. If 2 data breakpoints are present in the
EJTAG implementation, then they correspond to bits 16
and 17. The rest are always ignored by the tracing logic
since they will never be triggered.

A value of one for each bit implies that a trigger from
the corresponding data breakpoint should start tracing.
And a value of zero implies that tracing should be
turned off with the trigger signal.

R/W 0

IE 15

Used to specify whether the trigger signal from EJTAG
instruction breakpoint should trigger tracing functions
or not:

0: disables trigger signals from instruction breakpoints

1: enables trigger signals from instruction breakpoints

R/W 0

0 14:4 Reserved 0 0

IBPOn 3:0

Each of the 4 bits corresponds to the 4 possible EJTAG
hardware instruction breakpoints that may be
implemented. Bit 0 corresponds to the first instruction
breakpoint, and so on. If only 2 instruction breakpoints
are present in the EJTAG implementation, then only
bits 0 and 1 are used. The rest are always ignored by the
tracing logic since they will never be triggered.

A value of one for each bit implies that a trigger from
the corresponding instruction breakpoint should start
tracing. And a value of zero implies that tracing should
be turned off with the trigger signal.

R/W 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 145

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

ing

e

lue in

ritten

debug

t of the
lower
5.2.33 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, theDEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception caus
instruction is in a branch delay slot, and the Debug Branch Delay (DBD) bit in theDebug register is set.

For asynchronous debug exceptions (debug interrupt), theDEPC contains the virtual address of the instruction wher
execution should resume after the debug handler code is executed.

In processors that implement the MIPS16 ASE, a read of the DEPC register (via MFC0) returns the following va
the destination GPR:

GPR[rt] ← DebugExceptionPC 31..1 || ISAMode 0

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and w
to the GPR.

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, as follows

DebugExceptionPC ← GPR[rt] 31..1 || 0
ISAMode ← 2#0 || GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bi
debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
bit of the GPR.

Figure 5-35DEPC Register Format

31 0

DEPC

Table 5-39DEPC Register Formats

Fields

Description
Read/
Write ResetName Bit(s)

DEPC 31:0

TheDEPC register is updated with the virtual address of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot, then the virtual
address of the immediately preceding branch or jump
instruction is placed in this register.

Execution of the DERET instruction causes a jump to the
address in theDEPC.

 R/W Undefined
146 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

r both

RAM
used

on is
icated

, Index
ffects
5.2.34 ErrCtl Register (CP0 Register 26, Select 0)

The ErrCtl register provides a mechanism for enabling software testing of the way-select and data RAM arrays fo
the ICache and DCache. The way-selection RAM test mode is enabled by setting the WST bit. It modifies the
functionality of the CACHE Index Load Tag and Index Store Tag operations so that they modify the way-selection
and leave the Tag RAMs untouched. When this bit is set, the lower 6 bits of the PA field in the TagLo register are
as the source and destination for Index Load Tag and Index Store Tag CACHE operations.

The WST bit also enables the data RAM test mode. When this bit is set, the Index Store Data CACHE instructi
enabled. This CACHE operation writes the contents of the DataLo register to the word in the data array that is ind
by the index and byte address.

The SPR bit enables CACHE accesses to the optional Scratchpad RAMs. When this bit is set, Index Load Tag
Store Tag, and Index Store Data CACHE instructions will send reads or writes to the Scratchpad RAM port. The e
of these operations are dependent on the particular Scratchpad implementation.

Figure 5-36ErrCtl Register Format

31 30 29 28 27 0

R WST SPR R

Table 5-40ErrCtl Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

WST 29

Indicates whether the tag array or the way-select array
should be read/written on Index Load/Store Tag CACHE
instructions.

Also enables the Index Store Data CACHE instruction
which writes the contents of DataLo to the data array.

R/W 0

SPR 28 Forces indexed CACHE instructions to operate on the
ScratchPad RAM instead of the cache R/W 0

R 31:30,
27:0 Must be written as zero; returns zero on reads. 0 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 147

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

s of the
ent
5.2.35 TagLo Register (CP0 Register 28, Select 0)

TheTagLoregister acts as the interface to the cache tag array. The Index Store Tag and Index Load Tag operation
CACHE instruction use theTagLoregister as the source of tag information. Note that the 4KE core does not implem
the TagHi register.

Figure 5-37TagLo Register Format

31 16 15 10 9 8 7 6 5 4 0

PA PA/LRU R V D L R

Table 5-41TagLo Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

PA 31:10
This field contains the physical address of the cache line.
Bit 31 corresponds to bit 31 of the PA and bit 10
corresponds to bit 10 of the PA.

R/W Undefined

LRU 15:10 This field contains the value read from or to be stored to
the WS array if the WST bit in the ErrCtl register is set. R/W Undefined

R 9:8, 4:0 Must be written as zero; returns zero on read. 0 0

V 7 This field indicates whether the cache line is valid. R/W Undefined

D 6 This field indicates whether the cache line is dirty. It will
only be set if bit 7 (valid) is also set. R/W Undefined

L 5
Specifies the lock bit for the cache tag. When this bit is set,
and the valid bit is set, the corresponding cache line will
not be replaced by the cache replacement algorithm.

R/W Undefined
148 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

erations

ter.
5.2.36 DataLo Register (CP0 Register 28, Select 1)

TheDataLoregister is a register that acts as the interface to the cache data array and is intended for diagnostic op
only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into theDataLo
register. If the WST bit in theErrCtl register is set, then the contents ofDataLo can be written to the cache data array
by doing an Index Store Data CACHE instruction. Note that the 4KE core does not implement the DataHi regis

Figure 5-38DataLo Register Format

31 0

DATA

Table 5-42DataLo Register Field Description

Fields

Description
Read/W

rite
Reset
StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 149

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CP0 Registers of the 4KE™ Core

ram

error.

n is in

value

en to

o the

of the
lower
5.2.37 ErrorEPC (CP0 Register 30, Select 0)

TheErrorEPC register is a read/write register, similar to theEPC register, except thatErrorEPC is used on error
exceptions. All bits of theErrorEPC register are significant and must be writable. It is also used to store the prog
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error causing instructio
a branch delay slot

Unlike theEPC register, there is no corresponding branch delay slot indication for theErrorEPC register.

In processors that implement the MIPS16 ASE, a read of the ErrorEPC register (via MFC0) returns the following
in the destination GPR:

GPR[rt] ← ErrorExceptionPC 31..1 || ISAMode 0

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and writt
the GPR.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and distributes that value t
error exception PC and the ISAMode field, as follows

ErrprExceptionPC ← GPR[rt] 31..1 || 0
ISAMode ← 2#0 || GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
bit of the GPR.

Figure 5-39ErrorEPC Register Format

31 0

ErrorEPC

Table 5-43ErrorEPC Register Field Description

Fields

Description
Read/
Write Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined
150 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CP0 Register Descriptions

his
he context
ception
5.2.38 DeSave Register (CP0 Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location. T
register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of t
to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of ex
handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

Figure 5-40DeSave Register Format

31 0

DESAVE

Table 5-44DeSave Register Field Description

Fields

Description
Read/
Write Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 151

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 152

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

6.1 Hardware-Initialized Processor State

ly

ubset
 code

the

e

Chapter 6

Hardware and Software Initialization of the 4KE™ Core

A 4KE™ processor core contains only a minimal amount of hardware initialization and relies on software to ful
initialize the device.

This chapter contains the following sections:

• Section 6.1, "Hardware-Initialized Processor State"

• Section 6.2, "Software Initialized Processor State"

6.1 Hardware-Initialized Processor State

A 4KE processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal s
of the processor state is cleared. This is enough to bring the core up while running in unmapped and uncached
space. All other processor state can then be initialized by software.SI_ColdResetis asserted after power-up to bring the
device into a known state. Soft reset can be forced by asserting theSI_Resetpin. This distinction is made for
compatibility with other MIPS processors. In practice, both resets are handled identically with the exception of
setting ofStatusSR.

6.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0.

• Random (4KEc core only)- cleared to maximum value on Reset/SoftReset

• Wired (4KEc core only)- cleared to 0 on Reset/SoftReset

• StatusBEV - cleared to 1 on Reset/SoftReset

• StatusTS - cleared to 0 on Reset/SoftReset

• StatusSR - cleared to 0 on Reset, set to 1 on SoftReset

• StatusNMI - cleared to 0 on Reset/SoftReset

• StatusERL - set to 1 on Reset/SoftReset

• StatusRP - cleared to 0 on Reset/SoftReset

• WatchLoI,R,W - cleared to 0 on Reset/SoftReset

• Config fields related to static inputs - set to input value by Reset/SoftReset

• ConfigK0 - set to 010 (uncached) on Reset/SoftReset

• ConfigKU - set to 010 (uncached) on Reset/SoftReset (4KEm™ and 4KEp™ cores only)

• ConfigK23 - set to 010 (uncached) on Reset/SoftReset (4KEm and 4KEp cores only)

• ContextConfig - set to 0x007ffff0 on Reset/SoftReset (MIPS32 configuration)

• PageGrainMask - set to 11 on Reset/SoftReset (MIPS32 compatibility mode)

• DebugDM- cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode, se
Chapter 9, “EJTAG Debug Support in the 4KE™ Core.” for details)
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 153

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 6 Hardware and Software Initialization of the 4KE™ Core

try is
r-up
ftware.

et or

Reset.

t require

f the
ut the

eset.
r

dition
entry
• DebugLSNM - cleared to 0 on Reset/SoftReset

• DebugIBusEP - cleared to 0 on Reset/SoftReset

• DebugDBusEP - cleared to 0 on Reset/SoftReset

• DebugIEXI - cleared to 0 on Reset/SoftReset

• DebugSSt- cleared to 0 on Reset/SoftReset

6.1.2 TLB Initialization (4KEc™ core only)

Each 4KEc TLB entry has a “hidden” state bit which is set by Reset/SoftReset and is cleared when the TLB en
written. This bit disables matches and prevents “TLB Shutdown” conditions from being generated by the powe
values in the TLB array (when two or more TLB entries match on a single address). This bit is not visible to so

6.1.3 Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a Res
SoftReset exception is taken.

6.1.4 Static Configuration Inputs

All static configuration inputs (defining the bus mode and cache size for example) should only be changed during

6.1.5 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FC00000). This address is in KSeg1,which is unmapped and uncached, so that the TLB and caches do no
hardware initialization.

6.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

6.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the rest o
register file is not required for proper operation. Good code will generally not read a register before writing to it, b
boot code can initialize the register file for added safety.

6.2.2 TLB (4KEc™ Core Only)

Because of the hidden bit indicating initialization, the 4KEc core does not require TLB initialization upon ColdR
This is an implementation specific feature of the 4KEc core and cannot be relied upon if writing generic code fo
MIPS32/64 processors. When initializing the TLB, care must be taken to avoid creating a “TLB Shutdown” con
where two TLB entries could match on a single address. Unique virtual addresses should be written to each TLB
to avoid this.
154 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

6.2 Software Initialized Processor State

he arrays
can

 region.

ich are
us

g2/3

y

iteable,
be
6.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cac
should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function). This
be a long process, especially since the instruction cache initialization needs to be run in an uncached address

6.2.4 Coprocessor 0 State

Miscellaneous COP0 states need to be initialized prior to leaving the boot code. There are various exceptions wh
blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurio
exceptions when leaving the boot code.

• Cause: WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.

• Config: K0 should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing Kseg0.

• Config: (4KEm and 4KEp cores only) KU and K23 should be set to the desired CCA for USeg/KUSeg and KSe
respectively prior to accessing those regions.

• Count: Should be set to a known value if Timer Interrupts are used.

• Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear an
pending Timer Interrupts (Thus,Count should be set beforeCompare to avoid any unexpected interrupts).

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not explicitly wr
and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should
masked off after reading these registers.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 155

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 156

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 157

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

158 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.1 Cache Configurations

ime for
rences to
cur in

nd 2-way
ssed in a

urst
urned,
Chapter 7

Caches of the 4KE™ Core

This chapter describes the caches present in a 4KE processor core. It contains the following sections:

• Section 7.1, "Cache Configurations"

• Section 7.2, "Cache Protocols"

• Section 7.3, "Instruction Cache"

• Section 7.4, "Data Cache"

• Section 7.5, "CACHE Instruction"

• Section 7.6, "Software Cache Testing"

• Section 7.7, "Memory Coherence Issues"

7.1 Cache Configurations

A 4KE processor core supports separate instruction and data caches which may be flexibly configured at build t
various sizes, organizations and set-associativities. The use of separate caches allows instruction and data refe
proceed simultaneously. Both caches are virtually indexed and physically tagged, allowing cache access to oc
parallel with virtual-to-physical address translation.

The instruction and data caches are independently configured. For example, the data cache can be 2 KB in size a
set associative, while the instruction cache can be 8 KB in size and 4-way set associative. Each cache is acce
single processor cycle.

Cache refills are performed using a 4-word fill buffer, which holds data returned from memory during a 4-beat b
transaction. The critical miss word is always returned first. The caches are blocking until the critical word is ret
but the pipeline may proceed while the other 3 beats of the burst are still active on the bus.

Table 7-1 lists the instruction and data cache attributes:

Table 7-1 Instruction and Data Cache Attributes

Parameter Instruction Data

Size 0 - 64 KB 0 - 64 KB

Number of Cache Sets 0, 64, 128, 256, 512 and 1024 0, 64, 128, 256, 512 and 1024

Lines Per Set (Associativity) 1 - 4 way set associative 1 - 4 way set associative

Line Size 16 Bytes 16 Bytes

Read Unit 32 bits 32 bits

Minimum Write Unit 32 bits 8 bits
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 159

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches of the 4KE™ Core

several
ading
ge
Table 7-2shows the cache size and organization options; note that the same total cache size may be achieved with
different set associativities. Software can identify the instruction or data cache configuration on a 4KE core by re
the appropriate bits of theConfig1register; seeSection 5.2.22, "Config1 Register (CP0 Register 16, Select 1)" on pa
127.

.

Write Policy N/A

Software selectable options:

• write-back with write-allocate

• write-through with write-allocate

• write-through without write-allocate

Miss restart after transfer of miss word miss word

Cache Locking per line per line

Table 7-2 Instruction and Data Cache Sizes

Cache Size (bytes) Way Organization Options

0K No cache

1K One 1K way

2K
One 2K way

Two 1K ways

3K Three 1K ways

4K

One 4K way

Two 2K ways

Four 1K ways

6K Three 2K ways

8K

One 8K way

Two 4K ways

Four 2K ways

12K Three 4K ways

16K

One 16K way

Two 8K ways

Four 4K ways

24K Three 8K ways

32K
Two 16K ways

Four 8K ways

48K Three 16K ways

64K Four 16K ways

Table 7-1 Instruction and Data Cache Attributes (Continued)

Parameter Instruction Data
160 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.2 Cache Protocols

hes. This

indexed,
ysically

way to

ck bit.
nt or

cache,
ntries

. The
of bits

ty.
r line,
ction
7.2 Cache Protocols

This section describes cache organization, attributes, and cache-line replacement for the instruction and data cac
section also discusses issues relating to virtual aliasing.

7.2.1 Cache Organization

The instruction and data caches each consist of three arrays: tag, data and way-select. The caches are virtually
since a virtual address is used to select the appropriate line within each of the three arrays. The caches are ph
tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays holdn ways of information per set, corresponding to then-way set associativity of the cache,
wheren can be between 1 and 4 for a cache in a 4KE core. The way-select array holds information to choose the
be filled, as well as dirty bits in the case of the data cache.

Figure 7-1 on page 160 shows the format of each line in the tag, data and way-select arrays.

Figure 7-1 Cache Array Formats

A tag entry consists of the upper 22 bits of the physical address (bits [31:10]), one valid bit for the line, and a lo
A data entry contains the four 32-bit words in the line, for a total of 16 bytes. All four words in the line are prese
not in the data array together, hence the single valid bit stored with the tag. Once a valid line is resident in the
byte, halfword, triple-byte or full word stores can update all or a portion of the words in that line. The tag and data e
are repeated for each of then lines in the set, per the associativity.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm
LRU information applies to all the ways and there is one way-select entry for all the ways in the set. The number
in the way-select entry depends on the set associativity. In a direct mapped cache (n=1), there is no need for LRU bits,
since fills can only go to one place only.Table 7-3shows the number of LRU bits required as a function of associativi
The array with way-select entries for the data cache also holds dirty bit(s) for the lines. One dirty bit is required pe
as shown inTable 7-3. The instruction cache only supports reads, hence only LRU entries are stored in the instru
way-select array.

.

Table 7-3 LRU and Dirty Width in Way-Select Array

Associativity (n) LRU Bits
Dirty Bits (data

cache only)

1 0 1

2 1 2

Tag (per way):

Data (per way): Word3 Word2 Word1 Word0

PA Valid L

32 32 32 32

22 1 1

D Way-Select: LRU Dirty
0-6 1-4

I Way-Select: LRU
0-6
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 161

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches of the 4KE™ Core

ddresses

ly if
the target
f the
w store
opriate

ory
 see if the
ritten. If

iss is

only
the target
. If the
w store
s read-

gments
able

lt in a
), the

used
n that

termine
ivity of
7.2.2 Cacheability Attributes

A 4KE core supports the following cacheability attributes:

• Uncached: Addresses in a memory area indicated as uncached are not read from the cache. Stores to such a
are written directly to main memory, without changing cache contents.

• Write-back with write allocation: Loads and instruction fetches first search the cache, reading main memory on
the desired data does not reside in the cache. On data store operations, the cache is first searched to see if
address is cache resident. If it is resident, the cache contents are updated, but main memory is not written. I
cache lookup misses on a store, main memory is read to bring the line into the cache and merge it with the ne
data. Hence, the allocation policy on a cache miss is read- or write-allocate. Data stores will update the appr
dirty bit in the way-select array to indicate that the line contains modified data. When a line with dirty data is
displaced from the cache, it is written back to memory.

• Write-through with no write allocation: Loads and instruction fetches first search the cache, reading main mem
only if the desired data does not reside in the cache. On data store operations, the cache is first searched to
target address is cache resident. If it is resident, the cache contents are updated, and main memory is also w
the cache lookup misses on a store, only main memory is written. Hence, the allocation policy on a cache m
read-allocate only.

• Write-through with write allocation: Loads and instruction fetches first search the cache, reading main memory
if the desired data does not reside in the cache. On data store operations, the cache is first searched to see if
address is cache resident. If it is resident, the cache contents are updated, and main memory is also written
cache lookup misses on a store, main memory is read to bring the line into the cache and merge it with the ne
data. In addition, the store data is also written to main memory. Hence, the allocation policy on a cache miss i
or write-allocate.

Some segments of memory employ a fixed caching policy; for example the kseg1 is always uncacheable. Other se
of memory allow the caching policy to be selected by software. Generally, the cache policy for these programm
regions is defined by a cacheability attribute field associated with that region of memory. SeeChapter 3, “Memory
Management of the 4KE™ Core,” on page 34 for further details.

7.2.3 Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will resu
cache fill, when a cache is at least two-way set associative. In a direct mapped cache (one-way set associative
replacement policy is irrelevant since there is only one way available. The replacement policy is least recently
(LRU), but excluding any locked ways. The LRU bit(s) in the way-select array encode the order in which ways o
line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to de
the way which will be chosen. The number of lock bits and the number of LRU bits depend on the set associat
the cache.

The LRU field in the way select array is updated as follows:

3 3 3

4 6 4

Table 7-3 LRU and Dirty Width in Way-Select Array

Associativity (n) LRU Bits
Dirty Bits (data

cache only)
162 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.2 Cache Protocols

tive to

ways,
cement.
ate

ritten

al bits,
s in
e 4KEc

ize. For
address
ss bits
es may

These
present
che may

ing,
lly only
ed to
at the
• On a cache hit, the associated way is updated to be the most recently used. The order of the other ways rela
each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

• Index (Writeback) Invalidate : Least-recently used.

• Index Load Tag: No update.

• Index Store Tag, WST=0: Most-recently used if valid bit is set inTagLo CP0 register. Least-recently used if
valid bit is cleared inTagLo CP0 register.

• Index Store Tag, WST=1: Update the field with the contents of theTagLo CP0 register (refer to Table 7-5,
Table 7-6 or Table 7-7 for the valid values of this field).

• Index Store Data:No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Hit Writeback: No update.

• Fetch and Lock:Most-recently used.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked
the LRU bits are used to identify the way which has been used least recently, and that way is selected for repla
If all ways are locked: Fill data will not fill into the cache, and Write-back stores turn into Write-through Write-alloc
stores.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 16-byte line will be w
back to memory before the new fill can occur.

7.2.4 Virtual Aliasing

Since the caches are virtually indexed and physically tagged, a potential issue referred to asvirtual aliasingmight exist.
Virtual aliasing occurs if the virtual bits used to index a cache array are not consistent with the overlapping physic
after the virtual address has been translated to a physical address. The possibility of virtual aliasing only occur
address regions which are mapped through a TLB-based memory management unit, so it is only relevant for th
core and cannot occur in the 4KEm or 4KEp cores which contain a fixed memory management unit.

In TLB-mapped address regions, virtual aliasing may occur if the cache size per way is greater than the page s
example, consider a 16 KB cache organized as 2-way set associative. The size per way is then 8 KB, so virtual
bits [12:0] are used to index the array. If the address is in a translated region with a page size of 4 KB, then addre
[11:0] are untranslated but address bits [31:12] will be mapped and for these bits the virtual and physical address
be different. In this example, bit [12] could pose a potential problem due to virtual aliasing. Imagine two virtual
addresses, VA0 and VA1, whose only difference is the value of bit [12], which map to the same physical address.
two virtual addresses would be indexed to two different lines by the cache, even though they were intended to re
the same physical address. Then if a program does a load using VA0 and a store using VA1, or vice-versa, the ca
not return the expected data.

Table 7-4 shows the overlapped virtual/physical address bits which could potentially be involved in virtual alias
given the possible minimum page sizes and cache way sizes supported by a 4KE core. Virtual aliasing is genera
a problem for the D-cache, since stores don’t happen to the I-cache. No special hardware mechanism is provid
prevent the possibility of virtual aliasing, so it must be handled by software. The software solution must ensure th
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 163

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches of the 4KE™ Core

proach

 the tag
ays 22
size is 1
d bits

cally
r than

into the

cked or

gged
aving to

nts to be
cted for

nlocked
mapping of virtual address bits which overlap with physical address bits be handled consistently. The simplest ap
is to ensure that the overlapping bits are unity-mapped (VA equals PA).

A related issue can occur in virtually indexed, physically tagged caches if the number of physical bits stored in
array do not fully overlap the physically translated bits for the smallest page size. For a 4KE core, there are alw
address bits stored in the cache tag, representing bits [31:10] of the physical address. Since the minimum page
KB for the 4KEc, with bits [31:10] physically translated by the TLB, the cache tag size does overlap the translate
and this issue will not occur.

7.3 Instruction Cache

The instruction cache (I-cache) is an optional on-chip memory block of up to 64 KB. The virtually indexed, physi
tagged cache allows the virtual-to-physical address translation to occur in parallel with the cache access rathe
having to wait for the physical address translation.

The core supports instruction cache locking. Cache locking allows critical code or data segments to be locked
cache on a “per-line” basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always enabled on all instruction cache entries. Entries can then be marked as lo
unlocked on a per entry basis using the CACHE instruction.

7.4 Data Cache

The data cache (D-cache) is an optional on-chip memory block of up to 64 KB. The virtually indexed, physically ta
cache allows the virtual-to-physical address translation to occur in parallel with the cache access rather than h
wait for the physical address translation.

The core also supports a data cache locking mechanism identical to the instruction cache. Critical data segme
locked into the cache on a “per-line” basis. The locked contents can be updated on a store hit, but cannot be sele
replacement on a miss.

The cache locking function is always enabled on all data cache entries. Entries can then be marked as locked or u
on a per entry basis using the CACHE instruction.

Table 7-4 Potential Virtual Aliasing Bits

Minimum Page Size
(KB)

Cache Way Size
(KB)

Overlapped address
bits with possible

aliasing

1

2 [10]

4 [11:10]

8 [12:10]

16 [13:10]

4
8 [12]

16 [13:12]

8 16 [13]
164 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.5 CACHE Instruction

arrays,
, all
tail in

setting
,
ray.

ue,
for
7.5 CACHE Instruction

Both caches support the CACHE instructions, which allow users to manipulate the contents of the Data and Tag
including the locking of individual cache lines. Note that before the CACHE instructions are allowed to execute
initiated refills are completed and stores are sent to the write buffer. The CACHE instructions are described in de
Chapter 11, “4KE™ Processor Core Instructions,” on page 242.

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the WS- RAM by
theWSTbit in theErrCtl register. (TheErrCtl register is described inSection 5.2.34, "ErrCtl Register (CP0 Register 26
Select 0)" on page 147.) Note that when theWSTbit is zero, the CACHE index instructions access the cache Tag ar

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an iss
however, if the WS-RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings
way selection order is shown in Table 7-5, Table 7-6, and Table 7-7.

Table 7-5 Way Selection Encoding, 4 Ways

Selection Order1

1. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

WS[5:0] Selection Order WS[5:0]

0123 000000 2013 100010

0132 000001 2031 110010

0213 000010 2103 100110

0231 010010 2130 101110

0312 010001 2301 111010

0321 010011 2310 111110

1023 000100 3012 011001

1032 000101 3021 011011

1203 100100 3102 011101

1230 101100 3120 111101

1302 001101 3201 111011

1320 101101 3210 111111

Table 7-6 Way Selection Encoding, 3 Ways

Selection Order1

1. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

WS[5:0]2

2. A “?” indicates a don’t care when written and unpredictable when read.

Selection Order WS[5:0]

012 0xx00x 120 1xx10x

021 0xx01x 201 1xx01x

102 0xx10x 210 1xx11x
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 165

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches of the 4KE™ Core

essor
terrupts
re, only

x Store
tag

. Fill
s
or
d
e test
hecking

ndex

g to set
e PAs
d data.

e

7.6 Software Cache Testing

Typically, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the proc
to test all of the arrays. Of course, testing of the I-cache arrays should be done from an uncacheable space with in
disabled in order to maintain the cache contents. There are multiple methods for testing these arrays in softwa
one is presented here.

7.6.1 I-Cache/D-cache Tag Arrays

These arrays can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. Inde
Tag will write the contents of theTagLo register into the selected tag entry. Index Load Tag will read the selected
entry into theTagLo.

7.6.2 I-Cache Data Array

This array can be tested using the Index Invalidate, Fill, and Index Load Tag varieties of the CACHE instruction
will force a refill of the I-cache with data from a given address. In order to predict where the Fill data will go, it i
advisable to invalidate the I-cache array prior to filling it. The last way invalidated will be the first way selected f
replacement. Index Load Tag will read the selected data word into theDataLoregister. The entire I-cache may be flushe
using Index Invalidate. Then a test pattern can be stored into memory and the CACHE Fill operation will force th
pattern into the I-cache data array. Index Load Tags can be used to walk through each word of the I-cache array, c
the contents of theDataLo register against the expected value.

7.6.3 I-Cache WS Array

The testing of this array is very similar to the testing of the tag array. By setting the WST bit in the ErrCtl register, I
Load Tag and Index Store Tag CACHE instructions will read and write the WS array instead of the tag array.

7.6.4 D-Cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Ta
the initial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to th
that are resident in the cache. The value can then be read using LW instructions and compared to the expecte

7.6.5 D-cache WS Array

The dirty bits in this array will be tested when the data tag is tested. The LRU bits can be tested using the sam
mechanism as the I-cache WS array.

Table 7-7 Way Selection Encoding, 2 Ways

Selection Order1 WS[5:0]2 Selection Order WS[5:0]

01 xxx0xx 10 xxx1xx

1. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

2. A “?” indicates a don’t care when written and unpredictable when read.
166 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.7 Memory Coherence Issues

n. Since
hus
nce is

 must be
ols.

ld be
able
The only

the
n

’s write
7.7 Memory Coherence Issues

A cache presents coherency issues within the memory hierarchy which must be considered in the system desig
a cache holds a copy of memory data, it is possible for another memory master to modify a memory location, t
making other copies of that location stale if those copies are still in use. A detailed discussion of memory cohere
beyond the scope of this document, but following are a few related comments.

A 4KE processor contains no direct hardware support for managing coherency with respect to its caches, so it
handled via system design or software. The 4KE data cache supports either write-back or write-through protoc

In write-through mode, all data writes will eventually be sent to memory. Due to write buffers, however, there cou
a delay in how long it takes for the write to memory to actually occur. If another memory master updates cache
memory which could also be in the 4KE caches, then those locations may need to be flushed from the cache.
way to accomplish this invalidation is by use of the CACHE instruction.

In write-back mode, data writes only go to the cache and not to memory. So the processor cache may contain only
copy of data in the system until that data is written to main memory. Dirty lines are only written to memory whe
displaced from the cache as a new line is filled or if explicitly forced by certain flavors of the CACHE or PREF
instructions.

The SYNC instruction may also be useful to software enforcing memory coherence, as it flushes the 4KE core
buffers.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 167

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 167

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 8 Power Management of the 4KE™ Core

ower
esigned
during

ower

eption

e

on the
g of the
rupt
t or let it

nt
the error

e
ks.

e as the
bug
Chapter 8

Power Management of the 4KE™ Core

A 4KE™ processor core offers a number of power management features, including low-power design, active p
management and power-down modes of operation. The core is a static design that supports a WAIT instruction d
to signal the rest of the device that execution and clocking should be halted, reducing system power consumption
idle periods.

The core provides two mechanisms for system level low-power support discussed in the following sections.

• Section 8.1, "Register-Controlled Power Management"

• Section 8.2, "Instruction-Controlled Power Management"

8.1 Register-Controlled Power Management

The RP bit in the CP0Status register enables a standard software mechanism for placing the system into a low p
state. The state of the RP bit is available externally via theSI_RPoutput signal. Three additional pins,SI_EXL, SI_ERL,
andEJ_DebugMsupport the power management function by allowing the user to change the power state if an exc
or error occurs while the core is in a low power state.

Setting the RP bit of the CP0Statusregister causes the core to assert theSI_RPsignal. The external agent can then decid
whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending
needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The settin
EXL bit causes the assertion of theSI_EXL signal on the external bus, indicating to the external agent that an inter
has occurred. At this time the external agent can choose to either speed up the clocks and service the interrup
be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of theSI_ERLsignal on the external bus, indicating to the external age
that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
or let it be serviced at the lower clock speed.

Similarly, theEJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when th
processor takes a debug exception. If fast handling of this is desired, the external agent can speed up the cloc

The core provides four power down signals that are part of the system interface. Three of the pins change stat
corresponding bits in the CP0Status register are set or cleared. The fourth pin indicates that the processor is in de
mode:

• TheSI_RP signal represents the state of the RP bit (27) in the CP0Status register.

• TheSI_EXL signal represents the state of the EXL bit (1) in the CP0Status register.

• TheSI_ERL signal represents the state of the ERL bit (2) in the CP0Status register.

• TheEJ_DebugM signal indicates that the processor has entered debug mode.
168 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

8.2 Instruction-Controlled Power Management

idle
 pipeline

stalls
er

ode and
8.2 Instruction-Controlled Power Management

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus is
at the time the WAIT instruction reaches the M stage of the pipeline the internal clocks are suspended and the
is frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset, SI_ColdReset, and
EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the M stage, the pipeline
until the bus becomes idle, at which time the clocks are stopped. Once the CPU is in instruction controlled pow
management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the CPU to exit this m
resume normal operation. While the part is in this low-power mode, theSI_SLEEP signal is asserted to indicate to
external agents what the state of the chip is.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 169

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 170

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9

EJTAG Debug Support in the 4KE™ Core

The EJTAG debug logic in the 4KE™ processor cores provide three optional modules:

1. Hardware breakpoints

2. Test Access Port (TAP) for a dedicated connection to a debug host

3. EJTAG Trace for program counter/data address/data value trace to On-chip memory or to Trace probe.

This chapter contains the following sections:

• Section 9.1, "Debug Control Register" on page 172

• Section 9.2, "Hardware Breakpoints" on page 174

• Section 9.3, "Test Access Port (TAP)" on page 193

• Section 9.4, "EJTAG TAP Registers" on page 200

• Section 9.5, "TAP Processor Accesses" on page 209

• Section 9.7, "EJTAG Trace" on page 210

• Section 9.8, "PDtrace™ Registers (software control)" on page 214

• Section 9.9, "Trace Control Block (TCB) Registers (hardware control)" on page 215

• Section 9.10, "EJTAG Trace Enabling" on page 229

• Section 9.11, "TCB Trigger logic" on page 231

• Section 9.12, "EJTAG Trace cycle-by-cycle behavior" on page 234

• Section 9.13, "TCB On-Chip Trace Memory" on page 236
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 171

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

ftware

to the
 and a

asking
o reset

use the
system

g
w takes
9.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always
provided with the CPU core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug so
is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition
other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit,
pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of none, some or all sources for soft reset. The soft reset m
may only be applied to a soft reset source if that source can be efficiently masked in the system, thus resulting in n
at all. If that is not possible, then that soft reset source should not be masked, since a partial soft reset may ca
system to fail or hang. There is no automatic indication of whether the SRE is effective, so the user must consult
documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the debu
software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table belo
effect on both hard and soft resets.

Debug Control Register
31 30 29 28 18 17 16 15 5 4 3 2 1 0

Res ENM Res DB IB Res INTE NMIE NMIP SRE PE

Table 9-1Debug Control Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Res 31:30 Reserved R 0

ENM 29

Endianess in Kernel and Debug mode.

0: Little Endian
1: Big Endian

R Preset

Res 28:18 Reserved R 0

DB 17

Data Break Implemented.

0: No Data Break feature implemented
1: Data Break feature is implemented

R Preset

IB 16

Instruction Break Implemented.

0: No Instruction Break feature implemented
1: Instruction Break feature is implemented

R Preset

Res 15:5 Reserved R 0
172 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.1 Debug Control Register
INTE 4

Interrupt Enable in Normal Mode. This bit provides the
hardware and software interrupt enable for non-debug
mode, in addition to other masking mechanisms:

0: Interrupts disabled.
1: Interrupts enabled (depending on other enabling
mechanisms).

R/W 1

NMIE 3

Non-Maskable Interrupt Enable for non-debug mode

0: NMI disabled.
1: NMI enabled.

R/W 1

NMIP 2

NMI Pending Indication.

0: No NMI pending.
1: NMI pending.

R 0

SRE 1

Soft Reset Enable

This bit allows the system to mask soft resets. The core
does not internally mask soft resets. Rather the state of this
bit appears on theEJ_SRstE external output signal,
allowing the system to mask soft resets if desired.

R/W 1

PE 0

Probe Enable

This bit reflects the ProbEn bit in the EJTAG Control
register.

0: No accesses to dmseg allowed
1: EJTAG probe services accesses to dmseg

R

Samevalueas
ProbEn in

ECR

(see Table
9-4)

Table 9-1Debug Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 173

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

actions.
a debug

, and are
guish

d Data

een the
ally, a

ters for
debug
at the

ar to the
based on
re value.

saction
point
eption

ccurred.
match.
9.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store trans
It is possible to set instruction breakpoints on addresses even in ROM area,. Data breakpoints can be set to cause
exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many aspects
thus described in parallel in the following. The term hardware is not applied to breakpoint, unless required to distin
it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 4KE cores; Instruction breakpoints an
breakpoints.

A core may be configured with the following breakpoint options:

• No data or instruction breakpoints

• Two instruction and one data breakpoint

• Four instruction and two data breakpoints

9.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address on the bus betw
CPU and the instruction cache. Instruction breaks can also be made on the ASID value used by the MMU. Fin
mask can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the regis
each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a
exception and/or a trigger is generated. An internal bit in the instruction breakpoint registers is set to indicate th
match occurred.

9.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, simil
Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set
the value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/sto

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the tran
(ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data break
including masking or qualification on the transaction properties. When a data breakpoint matches, a debug exc
and/or a trigger is generated, and an internal bit in the data breakpoint registers is set to indicate that the match o
The match is precise in that the debug exception or trigger occurs on the instruction that caused the breakpoint to

9.2.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpoints in general is shown inTable 9-2.

Table 9-2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status
174 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

n. The

 n. The

nts only

TE bits
The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number is indicated by
registers for each breakpoint are shown inTable 9-3.

9.2.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shown inTable 9-4.

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number is indicated by
registers for each breakpoint are shown inTable 9-5.

9.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data
transaction, and the conditions for matching instruction and data breakpoints are described below. The breakpoi
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or
in theIBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the
implementation.

Table 9-3 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description

IBAn Instruction Breakpoint Address n

IBMn Instruction Breakpoint Address Mask n

IBASIDn Instruction Breakpoint ASID n

IBCn Instruction Breakpoint Control n

Table 9-4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

Table 9-5 Overview of Registers for each Data Breakpoint

Register Mnemonic Register Name and Description

DBAn Data Breakpoint Address n

DBMn Data Breakpoint Address Mask n

DBASIDn Data Breakpoint ASID n

DBCn Data Breakpoint Control n

DBVn Data Breakpoint Value n
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 175

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

ction in
tch. The
aligned

it level,
ave the
tation.

match

truction
 on data
xplicit
tination

ta value
equation

e ASID

 below.

NE as
mpare is
9.2.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instru
non-debug mode, including execution of instructions at an address causing an address error on an instruction fe
breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are un
with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at b
and match also can include an optional compare of ASID value. The registers for each instruction breakpoint h
values and mask used in the compare, and the equation that determines the match is shown below in C-like no

IB_match =
(! IBCn ASIDuse || (ASID == IBASIDn ASID)) &&
(<all 1’s> == (IBMnIBM | ~ (PC ^ IBAn IBA))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the IB_
to be true.

9.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store ins
executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error
access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of e
load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or des
address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the da
of a transaction. The registers for each data breakpoint have the values and mask used in the compare, and the
that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE == load) && ! DBCnNoLB) ||

((TYPE == store) && ! DBCnNoSB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), th
value, and the accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is
accessed, and BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown

DB_addr_match =
(! DBCnASIDuse || (ASID == DBASIDnASID)) &&
(<all 1’s> == (DBMnDBM | ~ (ADDR ^ DBAnDBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size ofDBCnBAI and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELA
described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_co
shown below.

DB_no_value_compare =
(<all 1’s> == (DBCnBLM | DBCnBAI | ~ BYTELANE))

The size ofDBCnBLM, DBCnBAI and BYTELANE is 4 bits.
176 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

(DATA)
atch

up of the

d/store
match

e, as

ug

load or
iving a

e
tion,

ion
.

nd the

s not

value is
In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus
is compared and masked with the registers for the data breakpoint. The endianess is not considered in these m
equations for value, as the compare uses the data bus value directly, thus debug software is responsible for set
breakpoint corresponding with endianess.

DB_value_match =
((DATA[7:0] == DBVnDBV[7:0]) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
((DATA[15:8] == DBVnDBV[15:8]) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
((DATA[23:16] == DBVnDBV[23:16]) || ! BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2])&&
((DATA[31:24] == DBVnDBV[31:24]) || ! BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3])

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the loa
instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the DB_
to be true.

9.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is tru
described below.

9.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in theIBCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in theIBSregister is set when the breakpoint generates the deb
exception.

The debug instruction break exception is always precise, so theDEPCregister and DBD bit in theDebugregister point
to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any
store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions rece
debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby th
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruc
otherwise the debug instruction break exception reoccurs.

9.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in theDBCnregister, then a debug exception occurs when the DB_match condit
is true. The corresponding BS[n] bit in theDBS register is set when the breakpoint generates the debug exception

A debug data break exception occurs when a data breakpoint indicates a match. In this case theDEPCregister and DBD
bit in theDebug register points to the instruction that caused the DB_match equation to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, a
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, i
allowed to complete the load.

• A load transaction for a breakpoint with data value compare must occur from the memory system, since the
required in order to evaluate the breakpoint.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 177

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

ecuted,
ut the

 a debug

ue

bug

ug

ction is
curred
able to
ares on
erwise

nerate a

pared

and are
The result of this is that the load or store instruction causing the debug data break exception appears as not ex
with the exception that a load from the memory system does occur for a breakpoint with data value compare, b
result of this load is discarded since the register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate
exception, then the following rules apply with respect to updating the BS[n] bits.

• On both a load and store the BS[n] bits are required to be set for all matching breakpoints without a data val
compare.

• On a store the BS[n] bits are allowed but not required to be set for all matching breakpoints with a data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

• On a load then no of the BS[n] bits are allowed to be set, since the load is not allowed to occur due to the de
exception from a breakpoint without a data value compare, and a valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by deb
software.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instru
re-executed. This re-execution may result in a repeated load from system memory, since the load may have oc
previously in order to evaluate the breakpoint as described above. I/O devices with side effects on loads must be
allow such reloads, or debug software should alternatively avoid setting data breakpoints with data value comp
such I/O devices. Debug software is responsible for disabling breakpoints when returning to the instruction, oth
the debug data break exception will reoccur.

9.2.7 Breakpoint used as TriggerPoint

Both instruction and data hardware breakpoints can be setup by software so a matching breakpoint does not ge
debug exception, but only an indication through the BS[n] bit. The TE bit in theIBCn or DBCn register controls if an
instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only com
for instructions executed in non-debug mode.

The BS[n] bit in theIBS or DBS register is set when the respective IB_match or DB_match bit is true.

The triggerpoint feature can be used to start and stop tracing. SeeSection 9.10, "EJTAG Trace Enabling" for details.

9.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information
used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown inTable 9-6.

Table 9-6 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n
178 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints
An example of some of the registers;IBA0 is at offset 0x1100 andIBC2 is at offset 0x1318.

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

Table 9-6 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

Note: n is breakpoint number in range 0 to 3 (or 0 to 1, depending on the implemented hardware)
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 179

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
9.2.8.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints.

The ASID applies to all the instruction breakpoints.

IBS Register Format
31 30 29 28 27 24 23 4 3 0

Res ASID
sup

Res BCN Res BS

Table 9-7IBS Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30

Indicates that ASID compare is supported in instruction
breakpoints.

0: No ASID compare.

1: ASID compare (IBASIDn register implemented).

1: Supported

0: Not supported

R
4KEc core- 1

4KEm/p cores - 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 4 or 2a

Res 23:4 Must be written as zero; returns zero on read. R 0

BS 3:0
Break status for breakpoint n is at BS[n], with n from 0
to 3b. The bit is set to 1 when the condition for the
corresponding breakpoint has matched.

R/W Undefined

Note: [a] Based on actual hardware implemented.

Note: [b] In case of only 2 Instruction breakpoints bit 2 and 3 become reserved.
180 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

int n
9.2.8.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpo

IBAn Register Format
31 0

IBA

Table 9-8IBAn Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

IBA 31:0 Instruction breakpoint address for condition. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 181

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

ition
9.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the cond
for instruction breakpoint n.

IBMn Register Format
31 0

IBM

Table 9-9IBMn Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

IBM 31:0

Instruction breakpoint address mask for condition:

0: Corresponding address bit not masked.

1: Corresponding address bit masked.

R/W Undefined
182 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

valid
9.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for instruction
breakpoint n. The number of bits in the ASID field is 8, to match the ASID size in the TLB. This register is only
for the 4KEc core.

IBASIDn Register Format
31 8 7 0

Res ASID

Table 9-10IBASIDn Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for a compare. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 183

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
9.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.

IBCn Register Format
31 24 23 22 3 2 1 0

Res ASID
use

Res TE Res BE

Table 9-11IBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23

Use ASID value in compare for instruction breakpoint n:

0: Don’t use ASID value in compare

1: Use ASID value in compare

4KEc core-
R/W

4KEm/4KEp
cores -0

Undefined

Res 22:3 Must be written as zero; returns zero on read. R 0

TE 2

Use instruction breakpoint n as triggerpoint:

0: Don’t use it as triggerpoint

1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on read. R 0

BE 0

Use instruction breakpoint n as breakpoint:

0: Don’t use it as breakpoint

1: Use it as breakpoint

R/W 0
184 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

are used
9.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and
the setup the data breakpoints. All registers are in drseg, and the addresses are shown inTable 9-12.

An example of some of the registers;DBM0 is at offset 0x2108 andDBV1 is at offset 0x2220.

Table 9-12 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

Note: n is breakpoint number as 0 or 1 (or just 0, depending on the implemented hardware)
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 185

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

ts.
9.2.9.1 Data Breakpoint Status (DBS) Register

Compliance Level: Implemented if data breakpoints are implemented.

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoin

The ASIDsup field indicates whether ASID compares are supported.

DBS Register Format
31 30 29 28 27 24 23 2 1 0

Res ASID
sup

Res BCN Res BS

Table 9-13DBS Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASID 30

Indicates that ASID compares are supported in data
breakpoints.

0: Not supported

1: Supported

R
4KEc core - 1

4KEm/p cores - 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of data breakpoints implemented. R 2 or 1a

Res 23:2 Must be written as zero; returns zero on read. R 0

BS 1:0
Break status for breakpoint n is at BS[n], with n from 0
to 1b. The bit is set to 1 when the condition for the
corresponding breakpoint has matched.

R/W0 Undefined

Note: [a] Based on actual hardware implemented.

Note: [b] In case of only 1 data breakpoint bit 1 become reserved.
186 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints
9.2.9.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n.

DBAn Register Format
31 0

DBA

Table 9-14DBAn Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

DBA 31:0 Data breakpoint address for condition. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 187

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

n for
9.2.9.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the conditio
data breakpoint n.

DBMn Register Format
31 0

DBM

Table 9-15DBMn Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

DBM 31:0

Data breakpoint address mask for condition:

0: Corresponding address bit not masked

1: Corresponding address bit masked

R/W Undefined
188 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints
9.2.9.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpoint n.

This register is only valid in the 4Kc core.

DBASIDn Register Format
31 8 7 0

Res ASID

Table 9-16DBASIDn Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compares. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 189

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
9.2.9.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.

DBCn Register Format
31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 0

Re ASID
use

Res BAI NoSB NoLB Res BLM Res TE Res BE

Table 9-17DBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on reads. R 0

ASIDuse 23

Use ASID value in compare for data breakpoint n:

0: Don’t use ASID value in compare

1: Use ASID value in compare

4Kc core - R/W

4Km/4Kp
cores - 0

Undefined

Res 22:18 Must be written as zero; returns zero on reads. R 0

BAI 17:14

Byte access ignore controls ignore of access to a
specific byte. BAI[0] ignores access to byte at bits [7:0]
of the data bus, BAI[1] ignores access to byte at bits
[15:8], etc.

0: Condition depends on access to corresponding byte

1: Access for corresponding byte is ignored

R/W Undefined

NoSB 13

Controls if condition for data breakpoint is not fulfilled
on a store transaction:

0: Condition may be fulfilled on store transaction

1: Condition is never fulfilled on store transaction

R/W Undefined

NoLB 12

Controls if condition for data breakpoint is not fulfilled
on a load transaction:

0: Condition may be fulfilled on load transaction

1: Condition is never fulfilled on load transaction

R/W Undefined

Res 11:8 Must be written as zero; returns zero on reads. R 0

BLM 7:4

Byte lane mask for value compare on data breakpoint.
BLM[0] masks byte at bits [7:0] of the data bus,
BLM[1] masks byte at bits [15:8], etc.:

0: Compare corresponding byte lane

1: Mask corresponding byte lane

R/W Undefined

Res 3 Must be written as zero; returns zero on reads. R 0
190 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints
TE 2

Use data breakpoint n as triggerpoint:

0: Don’t use it as triggerpoint

1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on reads. R 0

BE 0

Use data breakpoint n as breakpoint:

0: Don’t use it as breakpoint

1: Use it as breakpoint

R/W 0

Table 9-17DBCn Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 191

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
9.2.9.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

DBVn Register Format
31 0

DBV

Table 9-18DBVn Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

DBV 31:0 Data breakpoint value for condition. R/W Undefined
192 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

hieved
9.3 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible with
IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is ac
through Processor Access (PA), and is used to eliminate the use of the system memory for debug routines.

• Support for both ROM based debugger and debugging both through TAP.

9.3.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

Table 9-19 EJTAG Interface Pins

Pin Type Description

TCK I

Test Clock Input

Input clock used to shift data into or out of the Instruction or data
registers. TheTCK clock is independent of the processor clock, so the
EJTAG probe can driveTCK independently of the processor clock
frequency.

The core signal for this is calledEJ_TCK

TMS I

Test Mode Select Input

TheTMS input signal is decoded by the TAP controller to control test
operation.TMS is sampled on the rising edge ofTCK.

The core signal for this is calledEJ_TMS

TDI I

Test Data Input

Serial input data (TDI) is shifted into the Instruction register or data
registers on the rising edge of theTCK clock, depending on the TAP
controller state.

The core signal for this is calledEJ_TDI

TDO O

Test Data Output

Serial output data is shifted from the Instruction or data register to the
TDO pin on the falling edge of theTCK clock. When no data is shifted
out, theTDO is 3-stated.

The core signal for this is calledEJ_TDO with output enable controlled
by EJ_TDOzstate.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 193

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

mall

 the
egisters,
ction

lowing

ata
Pause

 to hold
ot output
9.3.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a s
controller, driven by theTCK input, which responds to theTMS input as shown in the state diagram inFigure 9-1 on
page 195. The TAP uses both clock edges ofTCK. TMS andTDI are sampled on the rising edge ofTCK, whileTDO
changes on the falling edge ofTCK.

At power-up the TAP is forced into theTest-Logic-Reset by low value onTRST_N. The TAP instruction register is
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through theTest-Logic-Reset state.

When test access is required, a protocol is applied via theTMS andTCK inputs, causing the TAP to exit the
Test-Logic-Resetstate and move through the appropriate states. From theRun-Test/Idlestate, an Instruction register scan
or a data register scan can be issued to transition the TAP through the appropriate states shown inFigure 9-1 on page 195.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to
protocol sequences. The first action that occurs when either block is entered is a capture operation. For the data r
theCapture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instru
register, theCapture-IR state is used to capture status information into the Instruction register.

From theCapture states, the TAP transitions to either theShift or Exit1 states. Normally theShift state follows the
Capturestate so that test data or status information can be shifted out for inspection and new data shifted in. Fol
theShiftstate, the TAP either returns to theRun-Test/Idlestate via theExit1andUpdatestates or enters thePausestate
via Exit1. The reason for entering thePause state is to temporarily suspend the shifting of data through either the D
or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From the
state shifting can resume by re-entering theShiftstate via theExit2state or terminate by entering theRun-Test/Idlestate
via theExit2 andUpdate states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is n
through the shadow latch until the TAP enters theUpdate-DR or Update-IR state. TheUpdate state causes the shadow
latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

TRST_N I

Test Reset Input (Optional pin)

TheTRST_N pin is an active-low signal for asynchronous reset of the
TAP controller and instruction in the TAP module, independent of the
processor logic. The processor is not reset by the assertion ofTRST_N.

The core signal for this is calledEJ_TRST_N

This signal is optional, but power-on reset must apply a low pulse on this
signal at power-on and then leave it high, in case the signal is not
available as a pin on the chip. If available on the chip, then it must be low
on the board when the EJTAG debug features are unused by the probe.

Table 9-19 EJTAG Interface Pins (Continued)

Pin Type Description
194 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

change

evious

er

evious
Figure 9-1 TAP Controller State Diagram

9.3.2.1 Test-Logic-Reset State

In theTest-Logic-Reset state the boundary scan test logic is disabled. The test logic enters theTest-Logic-Reset state
when theTMS input is held HIGH for at least five rising edges ofTCK. The BYPASS instruction is forced into the
instruction register output latches during this state. The controller remains in theTest-Logic-Resetstate as long asTMS
is HIGH.

9.3.2.2 Run-Test/Idle State

The controller enters theRun-Test/Idlestate between scan operations. The controller remains in this state as long asTMS
is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot
when the TAP controller is in this state.

WhenTMS is sampled HIGH on the rising edge ofTCK, the controller transitions to theSelect_DR state.

9.3.2.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their pr
state. IfTMSis sampled LOW at the rising edge ofTCK, then the controller transitions to theCapture_DRstate. A HIGH
onTMScauses the controller to transition to theSelect_IRstate. The instruction cannot change while the TAP controll
is in this state.

9.3.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their pr
state. IfTMSis sampled LOW on the rising edge ofTCK, the controller transitions to theCapture_IRstate. A HIGH on
TMS causes the controller to transition to theTest-Reset-Logic state. The instruction cannot change while the TAP
controller is in this state.

Shift_IR

Select_IR_Scan

Capture_IR

Exit1_IR

Pause_IR

Exit2_IR

Update_IR

1

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Shift_DR

Select_DR_Sc

Capture_DR

Exit1_DR

Pause_DR

Exit2_DR

Update_DR

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Test-Logic-Res

Run-Test/Idle

0

1

0

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 195

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

 and the

e

evious

ion

serial

e.

evious

f

er
revious

te.
9.3.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register,
value is then shifted out in theShift_DR. If TMSis sampled LOW at the rising edge ofTCK, the controller transitions to
theShift_DR state. A HIGH onTMS causes the controller to transition to theExit1_DR state. The instruction cannot
change while the TAP controller is in this state.

9.3.2.6 Shift_DR State

In this state the test data register connected betweenTDI andTDO as a result of the current instruction shifts data on
stage toward its serial output on the rising edge ofTCK. If TMSis sampled LOW on the rising edge ofTCK, the controller
remains in theShift_DRstate. A HIGH onTMScauses the controller to transition to theExit1_DRstate. The instruction
cannot change while the TAP controller is in this state.

9.3.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their pr
state. IfTMS is sampled LOW at the rising edge ofTCK, the controller transitions to thePause_DR state. A HIGH on
TMS causes the controller to transition to theUpdate_DR state which terminates the scanning process. The instruct
cannot change while the TAP controller is in this state.

9.3.2.8 Pause_DR State

ThePause_DRstate allows the controller to temporarily halt the shifting of data through the test data register in the
path betweenTDI andTDO. All test data registers selected by the current instruction retain their previous state. IfTMS
is sampled LOW on the rising edge ofTCK, the controller remains in thePause_DRstate. A HIGH onTMScauses the
controller to transition to theExit2_DR state. The instruction cannot change while the TAP controller is in this stat

9.3.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their pr
state. IfTMSis sampled LOW at the rising edge ofTCK, the controller transitions to theShift_DRstate to allow another
serial shift of data. A HIGH onTMS causes the controller to transition to theUpdate_DR state which terminates the
scanning process. The instruction cannot change while the TAP controller is in this state.

9.3.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during theShift_DR state takes effect on the rising edge o
theTCK for the register indicated by the Instruction register.

If TMSis sampled LOW at the rising edge ofTCK, the controller transitions to theRun-Test/Idlestate. A HIGH onTMS
causes the controller to transition to theSelect_DR_Scanstate. The instruction cannot change while the TAP controll
is in this state and all shift register stages in the test data registers selected by the current instruction retain their p
state.

9.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMSis sampled LOW at the rising edge ofTCK, the controller transitions to theShift_IRstate. A HIGH onTMScauses
the controller to transition to theExit1_IRstate. The instruction cannot change while the TAP controller is in this sta
196 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

ut

r is in

 the

ion

en
9.3.2.12 Shift_IR State

In this state the instruction register is connected betweenTDI andTDOand shifts data one stage toward its serial outp
on the rising edge ofTCK. If TMSis sampled LOW at the rising edge ofTCK, the controller remains in theShift_IRstate.
A HIGH onTMS causes the controller to transition to theExit1_IR state.

9.3.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. IfTMSis sampled LOW at the rising
edge ofTCK, the controller transitions to thePause_IRstate. A HIGH onTMScauses the controller to transition to the
Update_IR state which terminates the scanning process. The instruction cannot change while the TAP controlle
this state and the instruction register retains its previous state.

9.3.2.14 Pause_IR State

ThePause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in
serial path betweenTDI andTDO. If TMS is sampled LOW at the rising edge ofTCK, the controller remains in the
Pause_IRstate. A HIGH onTMScauses the controller to transition to theExit2_IRstate. The instruction cannot change
while the TAP controller is in this state.

9.3.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. IfTMS is sampled LOW
at the rising edge ofTCK, then the controller transitions to theShift_IRstate to allow another serial shift of data. A HIGH
onTMScauses the controller to transition to theUpdate_IRstate which terminates the scanning process. The instruct
cannot change while the TAP controller is in this state.

9.3.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge ofTCK.

If TMSis sampled LOW at the rising edge ofTCK, the controller transitions to theRun-Test/Idlestate. A HIGH onTMS
causes the controller to transition to theSelect_DR_Scan state.

9.3.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in theShift-IR
state. Instructions are decoded and define the serial test data register path that is used to shift data betweenTDI andTDO
during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have be
decoded; the unused instructions default to the BYPASS instruction.

Table 9-20 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 197

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

ister to
ssor
EEE

n (ID)
n
terfere

P data
9.3.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass reg
be connected betweenTDI andTDO. The BYPASS instruction allows serial data to be transferred through the proce
from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the I
1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

9.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identificatio
register to be connected betweenTDI andTDO. The Device ID register is a 32-bit shift register containing informatio
regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not in
with the operation of the processor. Also, access to the Identification Register is immediately available, via a TA
scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optionalTRST_Npin.

9.3.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

9.3.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected betweenTDI andTDO. The EJTAG Probe shifts
32 bits through theTDI pin into the Address register and shifts out the captured address via theTDO pin.

9.3.3.5 DATA Instruction

This instruction is used to select the Data register to be connected betweenTDI andTDO. The EJTAG Probe shifts 32
bits ofTDI data into the Data register and shifts out the captured data via theTDO pin.

9.3.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected betweenTDI andTDO. The EJTAG Probe
shifts 32 bits ofTDI data into the EJTAG Control register and shifts out the EJTAG Control register bits viaTDO.

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects theTCBTCONTROLAregister in the Trace Control Block

0x11 TCBCONTROLB Selects theTCBTCONTROLBregister in the Trace Control Block

0x12 TCBDATA Selects theTCBDATAregister in the Trace Control Block

0x1F BYPASS Bypass mode

Table 9-20 Implemented EJTAG Instructions (Continued)

Value Instruction Function
198 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

gister
any

robEn

 any
code in

rap,

pass
9.3.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control re
betweenTDI andTDO. It can be used in particular if switching instructions in the instruction register takes too m
TCK cycles. The first bit shifted out is bit 0.

Figure 9-2 Concatenation of the EJTAG Address, Data and Control Registers

9.3.3.8 EJTAGBOOT Instruction

When the EJTAGBOOT instruction is given and the Update-IR state is left, then the reset values of the ProbTrap, P
and EjtagBrk bits in the EJTAG Control register are set to 1 after a hard or soft reset.

This EJTAGBOOT indication is effective until a NORMALBOOT instruction is given,TRST_N is asserted or a rising
edge ofTCK occurs when the TAP controller is in Test-Logic-Reset state.

It is possible to make the CPU go into debug mode just after a hard or soft reset, without fetching or executing
instructions from the normal memory area. This can be used for download of code to a system which have no
ROM.

The Bypass register is selected when the EJTAGBOOT instruction is given.

9.3.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and the Update-IR state is left, then the reset value of the ProbT
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 0 after hard or soft reset.

The Bypass register is selected when the NORMALBOOT instruction is given.

9.3.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown inFigure 9-3.

Figure 9-3 TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

9.3.3.11 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected betweenTDI andTDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the By
register.

Address 0

Data 0

EJTAG Control 0 TDO

TDI

TDI Data TDOFastdata0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 199

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

pass

ass
idth of

 TAP:

truction

The
ion. A

g a data
ol signals
put
9.3.3.12 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected betweenTDI andTDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the By
register.

9.3.3.13 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected betweenTDI andTDO. This register is only
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Byp
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The w
the TCBDATA register is dependent on the specific TCB register.

9.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the

9.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Ins
register scan operation the TAP controller selects the output of the Instruction register to drive theTDO pin. The shift
register consists of a series of bits arranged to form a single scan path betweenTDI andTDO. During an Instruction
register scan operations, the TAP controls the register to capture status information and shift data fromTDI toTDO. Both
the capture and shift operations occur on the rising edge ofTCK. However, the data shifted out from theTDOoccurs on
the falling edge ofTCK. In the Test-Logic-Reset andCapture-IR state, the instruction shift register is set to 000012, as
for the IDCODE instruction. This forces the device into the functional mode and selects the Device ID register.
Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register scan operat
list of the implemented instructions are listed inTable 9-20.

9.4.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primaryTDI input to the primaryTDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed durin
register scan operation. During a data register scan operation, the addressed scan register receives TAP contr
to capture the register and shift data fromTDI to TDO. During a data register scan operation, the TAP selects the out
of the data register to drive theTDO pin. The register is updated in theUpdate-DR state with respect to the write bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

• Processor Access Address Register

• Processor Access Data Register

• FastData Register
200 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

bit scan
olved
isfy the

sion,

f the
ruction.

es are
uction.
9.4.2.1 Bypass Register

TheBypass register consists of a single scan register bit. When selected, the Bypass register provides a single
path betweenTDI andTDO. The Bypass register allows abbreviating the scan path through devices that are not inv
in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to sat
IEEE 1149.1 Bypass instruction requirement.

9.4.2.2 Device Identification (ID) Register

TheDevice Identificationregister is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi
and other device-specific information.Table 9-21 shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out oID
register after being selected. The register is selected when the Instruction register is loaded with the IDCODE inst

Device Identification Register Format

9.4.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset valu
set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE instr

Implementation Register Format

31 28 27 12 11 1 0

Version PartNumber ManufID R

Table 9-21 Device Identification Register

Fields

Description
Read/
Write Reset StateName Bit(s)

Version 31:28

Version (4 bits)

This field identifies the version number of the
processor derivative.

 R EJ_Version[3:0]

PartNumber 27:12

Part Number (16 bits)

This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1

Manufacturer Identity (11 bits)

Accordingly to IEEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.

 R EJ_ManufID[10:0]

R 0 reserved R 1

31 29 28 25 24 23 21 20 17 16 15 14 13 0

EJTAGver reserved DINTsup ASIDsize reserved MIPS16 0 NoDMA reserved
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 201

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

he
ifting

r 0

 TAP
still
et
9.4.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in t
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by sh
out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in theUpdate-DR state unless the Reset occurred (Rocc) bit 31, is eithe
or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on both hard and soft CPU resets, but not on
controller resets by e.g.TRST_N. TCKclock is not required when the hard or soft CPU reset occurs, but the bits are
updated to the reset value when theTCKapplies. The first 5TCKclocks after hard or soft CPU resets may result in res
of the bits, due to synchronization between clock domains.

EJTAG Control Register Format

Table 9-22Implementation Register Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

EJTAGver 31:29 EJTAG Version.
2: Version 2.6 R 2

reserved 28:25 reserved R 0

DINTsup 24

DINT Signal Supported from Probe

This bit indicates if the DINT signal from the probe is
supported:

0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.

R EJ_DINTsup

ASIDsize 23:21

Size of ASID field in implementation:

0: No ASID in implementation
1: 6-bit ASID
2: 8-bit ASID
3: Reserved

R

4KEc core - 2

4KEm/4KEp
cores - 0

reserved 20:17 reserved R 0

MIPS16 16

Indicates whether MIPS16 is implemented

0: No MIPS16 support

1: MIPS16 implemented

R Preset

reserved 15 reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

reserved 13:0 reserved R 0

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res EjtagBrk Res DM Res
202 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers
Table 9-23EJTAG Control Register Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Rocc 31

Reset Occurred

The bit indicates if a hard or soft reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value as long as a hard or
soft reset is applied.

This bit must be cleared by the probe, to acknowledge
that the incident was detected.

The EJTAG Control register is not updated in the
Update-DRstate unless Rocc is 0, or written to 0. This is
in order to ensure proper handling of processor access.

R/W 1

Psz[1:0] 30:29

Processor Access Transfer Size

These bits are used in combination with the lower two
address bits of the Address register to determine the size
of a processor access transaction. The bits are only valid
when processor access is pending.

Note: LE=little endian, BE=big endian, the byte# refers
to the byte number in a 32-bit register, where byte 3 =
bits 31:24; byte 2 = bits 23:16; byte 1 = bits 15:8; byte
0=bits 7:0, independently of the endianess.

R Undefined

Res 28:23 reserved R 0

Doze 22

Doze state

The Doze bit indicates any kind of low power mode. The
value is sampled in the Capture-DR state of the TAP
controller:
0: CPU not in low power mode.
1: CPU is in low power mode

Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.

R 0

PAA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte 3)

01 00 Byte (LE, byte 1; BE, byte 2)

10 00 Byte (LE, byte 2; BE, byte 1)

11 00 Byte (LE, byte 3; BE, byte 0)

00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1, 0)

00 11 Triple (LE, bytes 2, 1, 0; BE, bytes 3, 2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1, 0)

All others Reserved
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 203

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
Halt 21

Halt state

The Halt bit indicates if the internal system bus clock is
running or stopped. The value is sampled in the
Capture-DR state of the TAP controller:

0: Internal system clock is running
1: Internal system clock is stopped

R 0

PerRst 20

Peripheral Reset

When the bit is set to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the read
value of this bit is also 1. This is to ensure that the setting
from theTCKclock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared
in the CPU clock domain also.

This bit controls theEJ_PerRst signal on the core.

R/W 0

PRnW 19

Processor Access Read and Write

This bit indicates if the pending processor access is for a
read or write transaction, and the bit is only valid while
PrAcc is set:
0: Read transaction
1: Write transaction

R Undefined

PrAcc 18

Processor Access (PA)

Read value of this bit indicates if a Processor Access
(PA) to the EJTAG memory is pending:
0: No pending processor access
1: Pending processor access

The probe’s software must clear this bit to 0 to indicate
the end of the PA. Write of 1 is ignored.

A pending Processor Access is cleared when Rocc is set,
but another PA may occur just after the reset if a debug
exception occurs.

Finishing a Processor Access is not accepted while the
Rocc bit is set. This is to avoid that a Processor Access
occurring after the reset is finished due to indication of a
Processor Access that occurred before the reset.

The FASTDATA access can clear this bit.

R/W0 0

Res 17 reserved R 0

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)
204 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers
PrRst 16

Processor Reset (Implementation dependent behavior)

When the bit is set to 1, then it is only guaranteed that
this setting has taken effect in the system when the read
value of this bit is also 1. This is to ensure that the setting
from theTCKclock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared
in the CPU clock domain also.

This bit controls theEJ_PrRstsignal. If the signal is used
in the system, then it must be ensured that both the
processor and all devices required for a reset are properly
reset. Otherwise the system may fail or hang. The bit
resets itself, since the EJTAG Control register is reset by
hard or soft reset.

R/W 0

ProbEn 15

Probe Enable

This bit indicates to the CPU if the EJTAG memory is
handled by the probe so processor accesses are
answered:
0: The probe does not handle EJTAG memory
transactions
1: The probe does handle EJTAG memory transactions

It is an error by the software controlling the probe if it
sets the ProbTrap bit to 1, but resets the ProbEn to 0. The
operation of the processor is UNDEFINED in this case.

The ProbEn bit is reflected as a read-only bit in the
ProbEn bit, bit 0, in the Debug Control Register (DCR).

The read value indicates the effective value in the DCR,
due to synchronization issues betweenTCK and CPU
clock domains; however, it is ensured that change of the
ProbEn prior to setting the EjtagBrk bit will have effect
for the debug handler executed due to the debug
exception.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W

0 or 1

from

EJTAGBOOT

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 205

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

g, and
register
9.4.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmse
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
is selected by shifting in the ADDRESS instruction.

ProbTrap 14

Probe Trap

This bit controls the location of the debug exception
vector:
0: In normal memory 0xBFC0.0480
1: In EJTAG memory at 0xFF20.0200 in dmseg

Valid setting of the ProbTrap bit depends on the setting
of the ProbEn bit, see comment under ProbEn bit.

The ProbTrap should not be set to 1, for debug exception
vector in EJTAG memory, unless the ProbEn bit is also
set to 1 to indicate that the EJTAG memory may be
accessed.

The read value indicates the effective value to the CPU,
due to synchronization issues betweenTCK and CPU
clock domains; however, it is ensured that change of the
ProbTrap bit prior to setting the EjtagBrk bit will have
effect for the EjtagBrk.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W

0 or 1

from

EJTAGBOOT

Res 13 reserved R 0

EjtagBrk 12

EJTAG Break

Setting this bit to 1 causes a debug exception to the
processor, unless the CPU was in debug mode or another
debug exception occurred.
When the debug exception occurs, the processor core
clock is restarted if the CPU was in low power mode.
This bit is cleared by hardware when the debug
exception is taken.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W1

0 or 1

from

EJTAGBOOT

Res 11:4 reserved R 0

DM 3

Debug Mode

This bit indicates the debug or non-debug mode:
0: Processor is in non-debug mode
1: Processor is in debug mode

The bit is sampled in theCapture-DR state of the TAP
controller.

R 0

Res 2:0 reserved R 0

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)
206 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

th of

rom this
ora
ith a new

., a bit is
ther the
cess was
9.4.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The leng
the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output f
register is only valid when a processor access write is pending. The register is used to provide the data value f
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated w
value when a processor access write is pending.

ThePAD register is 32 bits wide. Data alignment is not used for this register, so the value in thePAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for aPAD read then 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in thePAD register depends on the endianess of the core, as shown inFigure 9-4 on page 207.
The endian mode for debug/kernel mode is determined by the state of theSI_Endian input at power-up.

Figure 9-4 Endian Formats for thePAD Register

The size of the transaction and thus the number of bytes available/required for thePADregister is determined by the Psz
field in theECR.

9.4.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e
shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whe
Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata ac
successful or not (if completion was requested).

Fastdata Register Format

0
SPrAcc

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 207

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

(on the
. A
ifies the
e Data +
a

rocessor
ccesses
 if the
loads will
a being
The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” spec
legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. Th
Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata are
accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (p
access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download a
are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to see
attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used). Down
also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will shift out the dat
stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

Table 9-25 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.
.

Table 9-24 Fastdata Register Field Description

Fields

Description
Read/
Write

Power-up
StateName Bits

SPrAcc 0

Shifting in a zero value requests completion of the
Fastdata access. The PrAcc bit in the EJTAG Control
register is overwritten with zero when the access succeeds.
(The access succeeds if PrAcc is one and the operation
address is in the legal dmseg Fastdata area.) When
successful, a one is shifted out. Shifting out a zero
indicates a Fastdata access failure.

Shifting in a one does not complete the Fastdata access
and the PrAcc bit is unchanged. Shifting out a one
indicates that the access would have been successful if
allowed to complete and a zero indicates the access would
not have successfully completed.

R/W Undefined

Table 9-25 Operation of the FASTDATA access

Probe
Operation

Address
Match
check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
shifted in

Action in the
Data Register

PrAcc
changes to

LSB
shifted

out
Data shifted

out

Download
using
FASTDATA

Fails x x none unchanged 0 invalid

Passes

1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1
valid

(previous)
data

0 x none unchanged 0 invalid
208 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.5 TAP Processor Accesses

een the
rd.

reby the
m the
 a serial
ing the

he range
on the

ddress

xception:

rAcc
ble and
There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated betw
download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit wo

The Rocc bit of the Control register is not used for the FASTDATA operation.

9.5 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whe
TAP module can operate like aslave unit connected to the on-chip bus. The core can then execute code taken fro
EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs in
way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without occupy
memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in t
from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In additi
LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from a
0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a soft or hard reset.

9.6 Fetch/Load and Store from/to the EJTAG Probe through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug e
0xFF20.0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the P
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is availa
can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

Upload
using
FASTDATA

Fails x x none unchanged 0 invalid

Passes

1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

Table 9-25 Operation of the FASTDATA access (Continued)

Probe
Operation

Address
Match
check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
shifted in

Action in the
Data Register

PrAcc
changes to

LSB
shifted

out
Data shifted

out
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 209

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

to the

on. This

. For this
ropriate

e store
s to be in

rAcc
ble and

to the

options
Mode
f this

ndent

B)
erface
7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate
processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instructi
starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory
to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the app
range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. Th
address must be in the range: 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit must be set and the processor ha
debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register

2. The internal hardware latches the data to be written into the PA Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the P
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is availa
can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

9.7 EJTAG Trace

EJTAG Trace enables the ability to trace program flow, load/store addresses and load/store data. Several run-time
exist for the level of information which is traced, including tracing only when in specific processor modes (i.e. User
or KernelMode). EJTAG Trace is an optional block in the 4KE core. If EJTAG Trace is not implemented, the rest o
chapter is irrelevant. If EJTAG Trace is implemented, theCP0 Config3TL bit is set.

The pipeline specific part of EJTAG Trace is architecturally specified in thePDtrace™ Interface Specification. The
PDtrace module extracts the trace information from the processor pipeline, and presents it to a pipeline-indepe
module called the Trace Control Block (TCB). The TCB is specified in theEJTAG Trace Control Block Specification.
The collective implementation of the two is calledEJTAG Trace.

When EJTAG Trace is implemented, the 4KE core includes both the PDtrace and the Trace Control Block (TC
modules. The two modules “talk” to each other on the generic pin-interface called the PDtrace™ Interface. This int
is embedded inside the 4KE core, and will not be discussed in detail here (read thePDtrace™ Interface Specification
210 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.7 EJTAG Trace

tely by

s quite
ly be
.

es are

odes. The

fer to

is

ow of
e

ype of

. The
for a detailed description). While working closely together, the two parts of EJTAG Trace are controlled separa
software.Figure 9-5 shows an overview of the EJTAG Trace modules within the core.

Figure 9-5 EJTAG Trace modules in the 4KE™ core

To some extent, the two modules both provide similar trace control features, but the access to these features i
different. The PDtrace controls can only be reached through access to CP0 registers. The TCB controls can on
reached through EJTAG TAP access. The TCB can then control what is traced through the PDtrace™ Interface

Before describing the EJTAG Trace implemented in the 4KE core, some common terminology and basic featur
explained. The remaining sections of this chapter will then provide a more thorough explanation.

9.7.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these m
terminology is then used elsewhere in the document.

DebugMode ← (Debug DM = 1)
ExceptionMode ← (not DebugMode) and ((Status EXL = 1) or (Status ERL = 1))
KernelMode ← (not (DebugMode or ExceptionMode)) and (Status UM = 0)
UserMode ← (not (DebugMode or ExceptionMode)) and (Status UM = 1)

9.7.2 Software versus Hardware control

In some of the specifications and in this text, the terms “software control” and “hardware control” are used to re
the method for how trace is controlled. Software control is when the CP0 registerTraceControl is used to select the
modes to trace, etc. Hardware control is when the EJTAG registerTCBCONTROLA in the TCB, via the PDtrace
interface, is used to select the trace modes. TheTraceControl.TSbit determines whether software or hardware control
active.

9.7.3 Trace information

The main object of trace is to show the exact program flow from a specific program execution or just a small wind
the execution. In EJTAG Trace this is done by providing the minimal cycle-by-cycle information necessary on th
PDtrace™ interface for trace regeneration software to reproduce the trace. The following is a summary of the t
information traced:

• Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag
PC is implicitly pointing to the next instruction.

Pipeline specific
PDtrace™ module

Pipeline independant
Trace Contol Block (TCB) modulePDtrace™

Interface

Control
path

CP0 control bus EJTAG TAP access

Extracted Pipeline
information

Back-stall to
pipeline

On-chip
Trace

Memory
(optional)

Trace
Probe

4KE
boundary

(m4k_top)

Trace
compression

and
allignment

Trace
extraction

TAP
Probe
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 211

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

m

traced.

nd full

sible

n, then
ve an
d as

ynamic
ical

safety

. When

the
to

y the
d.

the

traced
• Load instructions are indicated with a load-flag.

• Store instructions are indicated with a store-flag1.

• Taken branches are indicated with a branch-taken-flag on the target instruction.

• New PC information for a branch is only traced if the branch target is unpredictable from the static progra
image.

• When branch targets are unpredictable, only the delta value from current PC is traced, if it is dynamically
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC value is

• When a completing instruction is executed in a different processor mode from the previous one, the new
processor mode is traced.

• The first instruction is always traced as a branch target, with processor mode and full PC.

• Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode a
PC.

All the instruction flags above are combined into one 3-bit value, to minimize the bit information to trace. The pos
processor modes are explained inSection 9.7.1, "Processor Modes" on page 211.

The target address is statically predictable for all branch and all jump-immediate instructions. If the branch is take
the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which ha
unpredictable target address. These will have full/delta PC values included in the trace information. Also treate
unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software is required to know the static program image in memory, in order to reproduce the d
flow with the above information. But this is usually not a problem. Only the virtual value of the PC is used. Phys
memory location will typically differ.

It is possible to turn on PC delta/full information for all branches, but this should not normally be necessary. As a
check for trace regeneration software, a periodic synchronization with a full PC is sent. The period of this
synchronization is cycle based and programmable.

9.7.4 Load/Store address and data trace information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written
enabled, the following information is optionally added to the trace.

• When load-address tracing is on, the full load address of the first load instruction is traced (indicated by
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced
compress the information which must be sent.

• When store-address tracing is on, the full store address of the first store instruction is traced (indicated b
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is trace

• When load-data tracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

• When store-data tracing is on, the full store data written by each store instruction is traced (indicated by
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both
with the full address if load/store address tracing is enabled.

1 A SC (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.
212 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.7 EJTAG Trace

y

of the

them

r values

n,

ansmit
9.7.5 Programmable processor trace mode options

To enable tracing, a global Trace On signal must be set. When trace is on, it is possible to enable tracing in an
combination of the processor modes described inSection 9.7.1, "Processor Modes" on page 211. In addition to this, trace
can be turned on globally for all process, or only for specific processes by tracing only specific masked values
ASID found inEntryHiASID (4KEc cores only).

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn
all on. Another trigger point can disable this override again.

9.7.6 Programmable trace information options

The processor mode changes are always traced:

• On the first instruction.

• On any synchronization instruction.

• When the mode changes and either the previous or the current processor mode is selected for trace.

The amount of extra information traced is programmable to include:

• PC information only.

• PC and load address.

• PC and store address.

• PC and load and store address.

• PC and load address and load data.

• PC and store address and store data.

• PC and load and store address and load and store data.

• PC and load data only.

The last option is helpful when used together with instruction accurate simulators. If the full internal state of the
processor is known prior to trace start, PC and load data are the only information needed to recreate all registe
on an instruction by instruction basis.

9.7.6.1 User Data Trace

In addition to the above, a special CP0 register,UserTraceData, can generate a data trace. When this register is writte
and the global Trace On is set, then the 32-bit data written is put in the trace as special User Data information.

Remark: The User Data is sent even if the processor is operating in an un-traced processor mode.

9.7.7 Enable trace to probe/on-chip memory

When trace is On, based on the options listed inSection 9.7.5, "Programmable processor trace mode options", the trace
information is continuously sent on the PDtrace™ interface to the TCB. The TCB must, however, be enabled to tr
the trace information to the Trace probe or to on-chip trace memory, by having theTCBCONTROLBEN bit set. It is
possible to enable and disable the TCB in two ways:

• Set/clear theTCBCONTROLBEN bit via an EJTAG TAP operation.

• Initialize a TCB trigger to set/clear theTCBCONTROLBEN bit.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 213

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

 of:

ta
 and
ycle
CB is

six
sed at

on-chip
to store
 to
d or

ne
ration
ll and
nd will
9.7.8 TCB Trigger

The TCB can optionally include 0 to 8 triggers. A TCB trigger can be programmed to fire from any combination

• Probe Trigger Input to the TCB.

• Chip-level Trigger Input to the TCB.

• Processor entry into DebugMode.

When a trigger fires it can be programmed to have any combination of actions:

• Create Probe Trigger Output from TCB.

• Create Chip-level Trigger Output from TCB.

• Set, clear, or start countdown to clear theTCBCONTROLBEN bit (start/end/about trigger).

• Put an information byte into the trace stream.

9.7.9 Cycle by cycle information

All of the trace information listed inSection 9.7.3, "Trace information"andSection 9.7.4, "Load/Store address and da
trace information", will be collected from the PDtrace™ interface by the TCB. The trace will then be compressed
aligned to fit in 64 bit trace words, with no loss of information. It is possible to exclude/include the exact cycle-by-c
relationship between each instruction. If excluded, the number of bits required in the trace information from the T
reduced, and each trace word will only contain information from completing instructions.

9.7.10 Trace Message Format

The TCB collects trace information every cycle from the PDtrace™ interface. This information is collected into
different Trace Formats (TF1 to TF6). The definition of these Trace Formats is proprietary and will not be relea
this time. One important feature is that all Trace Formats have at least one non-zero bit.

9.7.11 Trace Word Format

After the PDtrace™ data has been turned into Trace Formats, the trace information must be streamed to either
trace memory or to the trace probe. Each of the major Trace Formats are of different size. This complicates how
this information into an on-chip memory of fixed width without too much wasted space. It also complicates how
transmit data through a fixed-width trace probe interface to off-chip memory. To minimize memory overhead an
bandwidth-loss, the Trace Formats are collected into Trace Words of fixed width.

A Trace Word (TW) is defined to be 64 bits wide. An empty/invalid TW is built of all zeros. A TW which contains o
or more valid TF’s is guaranteed to have a non-zero value on one of the four least significant bits [3:0]. During ope
of the TCB, each TW is built from the TF’s generated each clock cycle. When all 64 bits are used, the TW is fu
can be sent to either on-chip trace memory or to the trace probe. The exact definition of the TW’s is proprietary a
not be released at this time.

9.8 PDtrace™ Registers (software control)

The CP0 registers associated with PDtrace are listed inTable 9-26 and described inChapter 5, “CP0 Registers of the
4KE™ Core.”
214 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

a

e core’s
9.9 Trace Control Block (TCB) Registers (hardware control)

The TCB registers used to control its operation are listed inTable 9-27andTable 9-28. These registers are accessed vi
the EJTAG TAP interface.

9.9.1 TCBCONTROLA Register

The TCB is responsible for asserting or de-asserting the trace input control signals on the PDtrace interface to th
tracing logic. Most of the control is done using theTCBCONTROLA register.

TheTCBCONTROLA register is written by an EJTAG TAP controller instruction,TCBCONTROLA (0x10).

The format of theTCBCONTROLA register is shown below, and the fields are described inTable 9-29.

Table 9-26 A List of Coprocessor 0 Trace Registers

Register
Number Sel

Register
Name Reference

23 1 TraceControl Section 5.2.29, "Trace Control Register (CP0 Register 23, Select 1)" on page 139

23 2 TraceControl2 Section 5.2.30, "Trace Control2 Register (CP0 Register 23, Select 2)" on page 142

23 3 UserTraceData Section 5.2.31, "User Trace Data Register (CP0 Register 23, Select 3)" on page 144

23 4 TraceBPC Section 5.2.32, "TraceBPC Register (CP0 Register 23, Select 4)" on page 145

Table 9-27 TCB EJTAG registers

EJTAG
Register Name Reference Implemented

0x10 TCBCONTROLA Section 9.9.1, "TCBCONTROLA Register" on page 215 Yes

0x11 TCBCONTROLB Section 9.9.2, "TCBCONTROLB Register" on page 218 Yes

0x12 TCBDATA Section 9.9.3, "TCBDATA Register" on page 222 Yes

Table 9-28 Registers selected byTCBCONTROLBREG

TCBCONTROLB

REG field Name Reference Implemented

0 TCBCONFIG Section 9.9.4, "TCBCONFIG Register (Reg 0)" on page 223 Yes

4 TCBTW Section 9.9.5, "TCBTW Register (Reg 4)" on page 224
Yes

if on-chip memory
exists.

Otherwise No

5 TCBRDP Section 9.9.6, "TCBRDP Register (Reg 5)" on page 225

6 TCBWRP Section 9.9.7, "TCBWRP Register (Reg 6)" on page 225

7 TCBSTP Section 9.9.8, "TCBSTP Register (Reg 7)" on page 225

16-23 TCBTRIGx Section 9.9.9, "TCBTRIGx Register (Reg 16-23)" on page 226

Only the number
indicated by

TCBCONFIGTRIG
are implemented.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 215

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
TCBCONTROLA Register Format
31 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 1 0

0 VModes ADW SyP TB IO D E 0 K U ASID G Mode On

Table 9-29TCBCONTROLARegister Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:26 Reserved. Must be written as zero; returns zero on read. R 0

VModes 25:24

This field specifies the type of tracing that is supported by the
processor, as follows:

This field is preset to the value ofPDO_ValidModes.

R 10

ADW 23

PDO_AD bus width.

0: ThePDO_AD bus is 16 bits wide.
1: ThePDO_AD bus is 32 bits wide.

R 0

SyP 22:20

Used to indicate the synchronization period.

The period (in cycles) between which the periodic
synchronization information is to be sent is defined as shown
in the table below, when the trace buffer is either on-chip or
off-chip (as determined by theTCBCONTROLBOfC bit).

This field defines the value on thePDI_SyncPeriod signal.

R/W 100

TB 19

Trace All Branches. When set to one, this field indicates that
the core must trace either full or incremental PC values for all
branches. When set to zero, only the unpredictable branches
are traced.

This field defines the value on thePDI_TraceAllBranch
signal.

R/W Undefined

Encoding Meaning

00 PC tracing only

01 PC and Load and store address tracing only

10
PC, load and store address, and load and
store data.

11 Reserved

SyP On-chip Off-chip

000 22 27

001 23 28

010 24 29

011 25 210

100 26 211

101 27 212

110 28 213

111 29 214
216 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)
IO 18

Inhibit Overflow. This bit is used to indicate to the core trace
logic that slow but complete tracing is desired. Hence, the
core tracing logic must not allow a FIFO overflow and discard
trace data. This is achieved by stalling the pipeline when the
FIFO is nearly full so that no trace records are ever lost.

This field defines the value on thePDI_InhibitOverflow
signal.

R/W Undefined

D 17

When set to one, this enables tracing in Debug mode, i.e.,
when the DM bit is one in theDebugregister. For trace to be
enabled in Debug mode, the On bit must be one and either the
G bit must be one, or the current process must match the
ASID field in this register.

When set to zero, trace is disabled in Debug mode,
irrespective of other bits.

This field defines the value on thePDI_DM signal.

R/W Undefined

E 16

This controls when tracing is enabled. When set, tracing is
enabled when either of the EXL or ERL bits in theStatus
register is one, provided that the On bit (bit 0) is also set, and
either the G bit is set, or the current process ASID matches the
ASID field in this register.

This field defines the value on thePDI_E signal.

R/W Undefined

0 15 Reserved. Must be written as zero; returns zero on read. R 0

K 14

When set, this enables tracing when the On bit is set and the
core is in Kernel mode. Unlike the usual definition of Kernel
Mode, this bit enables tracing only when the ERL and EXL
bits in theStatusregister are zero. This is provided the On bit
(bit 0) is also set, and either the G bit is set, or the current
process ASID matches the ASID field in this register.

This field defines the value on thePDI_K signal.

R/W Undefined

U 13

When set, this enables tracing when the core is in User mode
as defined in the MIPS32 or MIPS64 architecture
specification. This is provided the On bit (bit 0) is also set, and
either the G bit is set, or the current process ASID matches the
ASID field in this register.

This field defines the value on thePDI_U signal.

R/W Undefined

ASID 12:5

The ASID field to match when the G bit is zero. When the G
bit is one, this field is ignored.

On 4KEm and 4KEp cores, this field is ignored.

This field defines the value on thePDI_ASID signal.

R/W Undefined

G 4

When set, this implies that tracing is to be enabled for all
processes, provided that other enabling functions (like U, S,
etc.,) are also true.

On 4KEm and 4KEp cores, this field is ignored.

This field defines the value on thePDI_G signal.

R/W Undefined

Table 9-29TCBCONTROLARegister Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 217

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
9.9.2 TCBCONTROLB Register

The TCB includes a second control register,TCBCONTROLB (0x11). This register generally controls what to do with
the trace information received.

The format of theTCBCONTROLBregister is shown below, and the fields are described inTable 9-30.

TCBCONTROLB Register Format

Mode 3:1

When tracing is turned on, this signal specifies what
information is to be traced by the core.

The VModes field determines which of these encodings are
supported by the processor. The operation of the processor is
UNPREDICTABLE if Mode is set to a value which is not
supported by the processor

This field defines the value on thePDI_TraceMode signal.

R/W Undefined

On 0

This is the global trace enable switch to the core. When zero,
tracing from the core is always disabled, unless enabled by
core internal software override of thePDI_* input pins.

When set to one, tracing is enabled whenever the other
enabling functions are also true.

This field defines the value on thePDI_TraceOn signal.

R/W 0

31 30 26 25 21 20 19 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 REG WR 0 RM TR BF TM 0 CR Cal 0 CA OfC EN

Table 9-30TCBCONTROLBRegister Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

WE 31

Write Enable.

Only when set to 1 will the other bits be written in
TCBCONTROLB.

This bit will always read 0.

R 0

Table 9-29TCBCONTROLARegister Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

Mode Trace Mode

000 Trace PC

001 Trace PC and load address

010 Trace PC and store address

011 Trace PC and both load/store addresses

100 Currently un-implemented

101 Trace PC and load address and data

110 Trace PC and store address and data

111 Trace PC and both load/store address and data
218 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)
0 30:26 Reserved. Must be written as zero; returns zero on read. R 0

REG 25:21
Register select: This field select the registers accessible
through theTCBDATA register. Legal values are shown in
Table 9-28.

R/W 0

WR 20
Write Registers: When set, the register selected by REG field
is read and written whenTCBDATAis accessed. Otherwise the
selected register is only read.

R/W 0

0 19:17 Reserved. Must be written as zero; returns zero on read. R 0

RM 16

Read on-chip trace memory.

When written to 1, the read address-pointer of the on-chip
memory is set to point to the oldest memory location written
since the last reset of pointers.

Subsequent access to theTCBTW register (through the
TCBDATA register), will automatically increment the read
pointer (TCBRDP register) after each read. [Note: The read
pointer does not auto-increment if the WR field is one.]

When the write pointer is reached, this bit is automatically
reset to 0, and theTCBTW register will read all zeros.

Once set to 1, writing 1 again will have no effect. The bit is
reset by setting the TR bit or by reading the last Trace word in
TCBTW.

This bit is reserved if on-chip memory is not implemented.

R/W1 0

TR 15

Trace memory reset.

When written to one, the address pointers for the on-chip trace
memory are reset to zero. Also the RM bit is reset to 0.

This bit is automatically de-asserted back to 0, when the reset
is completed.

This bit is reserved if on-chip memory is not implemented.

R/W1 0

BF 14

Buffer Full indicator that the TCB uses to communicate to
external software in the situation that the on-chip trace
memory is being deployed in thetrace-from andtrace-to
mode. (SeeSection 9.13, "TCB On-Chip Trace Memory")

This bit is cleared when writing 1 to the TR bit

This bit is reserved if on-chip memory is not implemented.

R 0

Table 9-30TCBCONTROLBRegister Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 219

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
TM 13:12

Trace Mode. This field determines how the trace memory is
filled when using the simple-break control in the PDtrace™
interface to start or stop trace.

In Trace-To mode, the on-chip trace memory is filled,
continuously wrapping around and overwriting older Trace
Words, as long as there is trace data coming from the core.

In Trace-From mode, the on-chip trace memory is filled from
the point thatPDO_IamTracing is asserted, and until the
on-chip trace memory is full.

In both cases, de-asserting the EN bit in this register will also
stop fill to the trace memory.

If a TCBTRIGx trigger control register is used to start/stop
tracing, then this field should be set to Trace-To mode.

This bit is reserved if on-chip memory is not implemented.

R/W 0

0 11 Reserved. Must be written as zero; returns zero on read. R 0

CR 10:8

Off-chip Clock Ratio. Writing this field, sets the ratio of the
core clock to the off-chip trace memory interface clock. The
clock-ratio encoding is shown inTable 9-31 on page 222.

Remark: As the Probe interface works in double data rate
(DDR) mode, a 1:2 ratio indicates one data packet sent per
core clock rising edge.

This bit is reserved if off-chip trace option is not implemented.

R/W 100

Table 9-30TCBCONTROLBRegister Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

TM Trace Mode

00 Trace-To

01 Trace-From

10 Reserved

11 Reserved
220 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)
Cal 7

Calibrate off-chip trace interface.

If set to one, the off-chip trace pins will produce the following
pattern in consecutive trace clock cycles. If more than 4 data
pins exist, the pattern is replicated for each set of 4 pins. The
pattern repeats from top to bottom until the Cal bit is
de-asserted.

Note: The clock source of the TCB and PIB must be running.

This bit is reserved if off-chip trace option is not implemented.

R/W 0

0 6:3 Reserved. Must be written as zero; returns zero on read. R 0

CA 2

Cycle accurate trace.

When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and
remove bit zero from all transmitted TF’s.

The stall information included/excluded is:

• TF6 formats with TCBcode 0001 and 0101.

• All TF1 formats.

R/W 0

OfC 1

If set to 1, trace is sent to off-chip memory usingTR_DATA
pins.

If set to 0, trace info is sent to on-chip memory.

This bit is read only if a single memory option exists (either
off-chip or on-chip only).

R/W Preset

Table 9-30TCBCONTROLBRegister Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

Calibrations
pattern

3 2 1 0

T
hi

s
pa

tte
rn

 is
 r

ep
lic

at
ed

 fo
r

ev
er

y
4

bi
ts

of
T

R
_

D
A

T
A p

in
s.

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 221

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
9.9.3 TCBDATA Register

TheTCBDATAregister (0x12) is used to access the registers defined by theTCBCONTROLBREGfield; seeTable 9-28.
Regardless of which register or data entry is accessed throughTCBDATA, the register is only written if the
TCBCONTROLBWR bit is set. For read-only registers, theTCBCONTROLBWR is a don’t care.

The format of theTCBDATAregister is shown below, and the field is described inTable 9-32. The width ofTCBDATA
is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

TCBDATA Register Format

EN 0

Enable trace.

This is the master enable for trace to be generated from the
TCB. This bit can be set or cleared, either by writing this
register or from a start/stop/about trigger.

When set to 1, trace information is sampled on thePDO_*
pins. Trace Words are generated and sent to either on-chip
memory or to the Trace Probe. The target of the trace is
selected by the OfC bit.

When set to 0, trace information on thePDO_* pins is
ignored. A potential TF6-stop (from a stop trigger) is
generated as the last information, the TCB pipe-line is flushed,
and trace output is stopped.

R/W 0

Table 9-31 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio

000 8:1 (Trace clock is eight times that of core clock)

001 4:1 (Trace clock is four times that of core clock)

010 2:1 (Trace clock is double that of core clock)

011 1:1 (Trace clock is same as core clock)

100 1:2 (Trace clock is one half of core clock)

101 1:4 (Trace clock is one fourth of core clock)

110 1:6 (Trace clock is one sixth of core clock)

111 1:8 (Trace clock is one eighth of core clock)

31(63) 0

Data

Table 9-30TCBCONTROLBRegister Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
222 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)
9.9.4 TCBCONFIG Register (Reg 0)

TheTCBCONFIG register holds information about the hardware configuration of the TCB. The format of the
TCBCONFIGregister is shown below, and the field is described inTable 9-33.

TCBCONFIG Register Format

Table 9-32TCBDATA Register Field Descriptions

Fields

Description Read/Write
Reset
StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the
TCBCONTROLBREG field

Only writable if
TCBCONTROLBWR

is set
0

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN OnT OfT REV

Table 9-33TCBCONFIG Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

CF1 31
This bit is set if aTCBCONFIG1 register exists. In this
revision,TCBCONFIG1 does not exist and this bit always
reads zero.

R 0

0 30:25 Reserved. Must be written as zero; returns zero on read. R 0

TRIG 24:21 Number of triggers implemented. This also indicates the
number ofTCBTRIGx registers that exist. R Legal values

are 0 - 8

SZ 20:17

On-chip trace memory size. This field holds the encoded size
of the on-chip trace memory.

The size in bytes is given by 2(SZ+8), implying that the
minimum size is 256 bytes and the largest is 8Mb.

This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14

Off-chip Maximum Clock Ratio.

This field indicates the maximum ratio of the core clock to the
off-chip trace memory interface clock. The clock-ratio
encoding is shown inTable 9-31 on page 222.

This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11

Off-chip Minimum Clock Ratio.

This field indicates the minimum ratio of the core clock to the
off-chip trace memory interface clock.The clock-ratio
encoding is shown inTable 9-31 on page 222.

This bit is reserved if off-chip trace option is not implemented.

R Preset
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 223

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

to by

ack
9.9.5 TCBTW Register (Reg 4)

TheTCBTWregister is used to read Trace Words from the on-chip trace memory. The TW read is the one pointed
theTCBRDP register. A side effect of reading theTCBTW register is that theTCBRDP register increments to the next
TW in the on-chip trace memory. IfTCBRDPis at the max size of the on-chip trace memory, the increment wraps b
to address zero.

This register is reserved if on-chip trace memory is not implemented.

The format of theTCBTWregister is shown below, and the field is described inTable 9-34.

TCBTW Register Format

PW 10:9

Probe Width: Number of bits available on the off-chip trace
interfaceTR_DATA pins. The number of TR_DATA pins is
encoded, as shown in the table.

This field is preset based on input signals to the TCB and the
actual capability of the TCB.

This bit is reserved if off-chip trace option is not implemented.

R Preset

PiN 8:6
Pipe number.

Indicates the number of execution pipelines.
R 0

OnT 5
When set, this bit indicates that on-chip trace memory is
present. This bit is preset based on the selected option when
the TCB is implemented.

R Preset

OfT 4

When set, this bit indicates that off-chip trace interface is
present. This bit is preset based on the selected option when
the TCB is implemented, and on the existence of a PIB module
(TC_PibPresent asserted).

R Preset

REV 3:0 Revision of TCB. An implementation that conforms to the
described architecture in this document must have revision 0. R 0

63 0

Data

Table 9-34TCBTW Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateNames Bits

Data 63:0 Trace Word R/W 0

Table 9-33TCBCONFIG Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

PW Number of bits used onTR_DATA

00 4 bits

01 8 bits

10 16 bits

11 reserved
224 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

TW

zero.

ch the
9.9.6 TCBRDP Register (Reg 5)

TheTCBRDPregister is the address pointer to on-chip trace memory. It points to the TW read when reading theTCBTW
register. When writing theTCBCONTROLBRM bit to 1, this pointer is reset to the current value ofTCBSTP.

This register is reserved if on-chip trace memory is not implemented.

The format of theTCBRDPregister is shown below, and the field is described inTable 9-35. The value of n depends on
the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

TCBRDP Register Format

9.9.7 TCBWRP Register (Reg 6)

TheTCBWRPregister is the address pointer to on-chip trace memory. It points to the location where the next new
for on-chip trace will be written.

This register is reserved if on-chip trace memory is not implemented.

The format of theTCBWRPregister is shown below, and the fields are described inTable 9-36. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always

TCBWRP Register Format

9.9.8 TCBSTP Register (Reg 7)

TheTCBSTPregister is the start pointer register. This register points to the on-chip trace memory address at whi
oldest TW is located. This pointer is reset to zero when theTCBCONTROLBTR bit is written to 1. If a continuous trace
to on-chip memory wraps around the on-chip memory,TSBSTP will have the same value asTCBWRP.

31 n+1 n 0

Address

Table 9-35TCBRDP Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Address

Table 9-36TCBWRP Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 225

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

.

trigger
This register is reserved if on-chip trace memory is not implemented.

The format of theTCBSTPregister is shown below, and the fields are described inTable 9-37. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero

TCBSTP Register Format

9.9.9 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is namedTCBTRIGx, wherex is a single digit number
from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger registers implemented is defined in the
TCBCONFIGTRIG field. An unimplemented register will read all zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger is fired, and the action to be taken when the
occurs. Please also readChapter 9, “EJTAG Debug Support in the 4KE™ Core,” on page 231, for detailed description
of trigger logic issues.

The format of theTCBTRIGxregister is shown below, and the fields are described inTable 9-38.

TCBTRIGx Register Format

31 n+1 n 0

Address

Table 9-37TCBSTP Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 24 23 22 17 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Tra
ce

0 CH
Tro

PD
Tro

0 DM CH
Tri

PD
Tri

Type FO TR

Table 9-38TCBTRIGx Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateNames Bits

TCBinfo 31:24 TCBinfo to be used in a possible TF6 trace format when this
trigger fires. R/W 0

Trace 23

When set, generate TF6 trace information when this trigger fires.
Use TCBinfo field for the TCBinfo of TF6 and use Type field for
the two MSB of the TCBtype of TF6. The two LSB of TCBtype
are 00.

The write value of this bit always controls the behavior of this
trigger.

When this trigger fires, the read value will change to indicate if the
TF6 format was ever suppressed by a simultaneous trigger. If so,
the read value will be 0. If the write value was 0, the read value is
always 0. This special read value is valid until theTCBTRIGx
register is written.

R/W 0
226 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)
0 22:16 Reserved. Must be written as zero; returns zero on read. R 0

CHTro 15 When set, generate a single cycle strobe onTC_ChipTrigOutwhen
this trigger fires. R/W 0

PDTro 14 When set, generate a single cycle strobe onTC_ProbeTrigOut
when this trigger fires. R/W 0

0 13:7 Reserved. Must be written as zero; returns zero on read. R 0

DM 6

When set, this Trigger will fire when a rising edge on the Debug
mode indication from the core is detected.

The write value of this bit always controls the behavior of this
trigger.

When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

CHTri 5

When set, this Trigger will fire when a rising edge on
TC_ChipTrigIn is detected.

The write value of this bit always controls the behavior of this
trigger.

When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

PDTri 4

When set, this Trigger will fire when a rising edge on
TC_ProbeTrigIn is detected.

The write value of this bit always controls the behavior of this
trigger.

When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

Table 9-38TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
StateNames Bits
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 227

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core
9.9.10 Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAP controller enters/is in Test-Logic-Reset state.

2. EJ_TRST_N input is asserted low.

Type 3:2

Trigger Type: The Type indicates the action to take when this
trigger fires. The table below show the Type values and the Trigger
action.

The actual action is to set or clear theTCBCONTROLBEN bit. A
Start trigger will setTCBCONTROLBEN, a End trigger will clear
TCBCONTROLBEN. The About trigger will clear
TCBCONTROLBEN half way through the trace memory, from the
trigger. The size determined by theTCBCONFIGSZ field for
on-chip memory. Or from theTCBCONTROLASyP field for
off-chip trace.

If Trace is set, then a TF6 format is added to the trace words. For
Start and Info triggers this is done before any other TF’s in that
same cycle. For End and About triggers, the TF6 format is added
after any other TF’s in that same cycle.

If the TCBCONTROLBTM field is implemented it must be set to
Trace-To mode (00), for the Type field to control on-chip trace fill.

The write value of this bit always controls the behavior of this
trigger.

When this trigger fires, the read value will change to indicate if the
trigger action was ever suppressed. If so the read value will be 11.
If the write value was 11 the read value is always 11. This special
read value is valid until theTCBTRIGx register is written.

R/W 0

FO 1
Fire Once. When set, this trigger will not re-fire until the TR bit is
de-asserted. When de-asserted this trigger will fire each time one
of the trigger sources indicates trigger.

R/W 0

TR 0

Trigger happened. When set, this trigger fired since the TR bit was
last written 0.

This bit is used to inspect whether the trigger fired since this bit
was last written zero.

When set, all the trigger source bits (bit 4 to 13) will change their
read value to indicate if the particular bit was the source to fire this
trigger. Only enabled trigger sources can set the read value, but
more than one is possible.

Also when set the Type field and the Trace field will have read
values which indicate if the trigger action was ever suppressed by
a higher priority trigger.

R/W0 0

Table 9-38TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
StateNames Bits

Type Trigger action

00 Trigger Start: Trigger start-point of trace.

01 Trigger End: Trigger end-point of trace.

10 Trigger About: Trigger center-point of trace.

11 Trigger Info: No action trigger, only for trace
info.
228 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.10 EJTAG Trace Enabling

ff. This

used as
capable

n the
84

n
tart or a
145

n the
9.10 EJTAG Trace Enabling

As there are several ways to enable tracing, it can be quite confusing to figure out how to turn tracing on and o
section should help clarify the enabling of trace.

9.10.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the 4KE core, then these breakpoint can be
triggers to start/stop trace. When used for this, the breakpoints need not also generate a debug exception, but are
of only generating an internal trigger to the trace logic. This is done by only setting the TE bit and not the BE bit i
Breakpoint Control register. Please seeSection 9.2.8.5, "Instruction Breakpoint Control n (IBCn) Register" on page 1
andSection 9.2.9.5, "Data Breakpoint Control n (DBCn) Register" on page 190, for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace actio
when a trigger happens. When a breakpoint is enabled as a trigger (TE = 1), it can be selected to be either a s
stop trigger to the trace logic. Please seeSection 5.2.32, "TraceBPC Register (CP0 Register 23, Select 4)" on page
for detail in how to define a start/stop trigger.

9.10.2 Turning OnPDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits i
control register are used instead of the input enable signals from the TCB. TheTraceControlTS bit controls whether
hardware (via the TCB), or software (via theTraceControl register) controls tracing functionality.

Trace is turned on when the following expression evaluates true:

(
(

(TraceControl TS and TraceControl On) or
((not TraceControl TS) and TCBCONTROLAOn)

)
and
(MatchEnable or TriggerEnable)

)

where,

MatchEnable ←
(

TraceControl TS
and
(

(TraceControl U and UserMode) or
(TraceControl K and KernelMode) or
(TraceControl E and ExceptionMode) or
(TraceControl D and DebugMode)

)
)
or
(

(not TraceControl TS)
and
(

(TCBCONTROLAU and UserMode) or
(TCBCONTROLAK and KernelMode) or
(TCBCONTROLAE and ExceptionMode) or
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 229

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

s.

are
les finer
mple,
gering

ponding

only
st if

with
(TCBCONTROLADM and DebugMode)
)

)

and where,

TriggerEnable ←
(

DBCiTE and
DBSBS[i] and
TraceBPC DE and
(TraceBPC DBPOn[i] = 1)

)
or
(

IBCi TE and
IBS BS[i] and
TraceBPC IE and
(TraceBPC IBPOn[i] = 1)

)

As seen in the expression above, trace can be turned on only if the master switchTraceControlOnor TCBCONTROLAOn
is first asserted.

Once this is asserted, there are two ways to turn on tracing. The first way, theMatchEnable expression, uses the input
enable signals from the TCB or the bits in theTraceControl register. This tracing is done over general program area
For example, all of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, theTriggerEnableexpression, is from the processor side using the EJTAG hardw
breakpoint triggers. If EJTAG is implemented, and hardware breakpoints can be set, then using this method enab
grain tracing control. It is possible to send a trigger signal that turns on tracing at a particular instruction. For exa
it would be possible to trace a single procedure in a program by triggering on trace at the first instruction, and trig
off trace at the last instruction.

The easiest way to unconditionally turn on trace is to assert either hardware or software tracing and the corres
trace on signal with other enables. For example, withTraceControlTS=0, i.e., hardware controlled tracing, assert
TCBCONTROLAOn, TCBCONTROLAG, and all the other signals in the second part of expressionMatchEnable. To only
trace when a particular process with a known ASID is executing, assertTCBCONTROLAOn, the correct
TCBCONTROLAASID value, and all ofTCBCONTROLAU, TCBCONTROLAK, TCBCONTROLAE, and
TCBCONTROLADM. (If it is known that the particular process is a user-level process, then it would be sufficient to
assertTCBCONTROLAU for example). When using the EJTAG hardware triggers to turn trace on and off, it is be
TCBCONTROLAOn is asserted and all the other processor mode selection bits inTCBCONTROLA are turned off. This
would be the least confusing way to control tracing with the trigger signals. Tracing can be controlled via software
theTraceControl register in a similar manner.

9.10.3 Turning Off PDtrace™ Trace

Trace is turned off when the following expression evaluates true:

(
(TraceControl TS and (not TraceControl On))) and
((not TraceControl TS) and (not TCBCONTROLA On))

)
or
(

(not MatchEnable) and
(not TriggerEnable) and
230 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.11 TCB Trigger logic

f the

 one of
This

is sent

ol
t
reset the

ero.
TriggerDisable
)

where,

TriggerDisable ←
(

DBCiTE and
DBSBS[i] and
TraceBPC DE and
(TraceBPC DBPOn[i] = 0)

)
or
(

IBCi TE and
IBS BS[i] and
TraceBPC IE and
(TraceBPC IBPOn[i] = 0)

)

Tracing can be unconditionally turned off by de-asserting theTraceControlOn bit or theTCBCONTROLAOn signal.
When either of these are asserted, tracing can be turned off if all of the enables are de-asserted, irrespective o
TraceControlG bit (TCBCONTROLAG) and TraceControlASID (TCBCONTROLAASID) values. EJTAG hardware
breakpoints can be used to trigger trace off as well. Note that if simultaneous triggers are generated, and even
them turns on tracing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on.
condition is reflected in presence of the “(not TriggerEnable)” term in the expression above.

9.10.4 TCB Trace Enabling

The TCB must be enabled in order to produce a trace on the probe or to on-chip memory, when trace information
on the PDtrace™ interface. The main switch for this is the TCBCONTROLBEN bit. When set, the TCB will send trace
information to either on-chip trace memory or to the Trace Probe, controlled by the setting of theTCBCONTROLBOfC
bit.

The TCB can optionally include trigger logic, which can control theTCBCONTROLBEN bit. Please seeSection 9.11,
"TCB Trigger logic" for details.

9.10.5 Tracing a reset exception

Tracing a reset exception is possible. However, theTraceControlTS bit is reset to 0 at core reset, so all the trace contr
must be from the TCB (usingTCBCONTROLA andTCBCONTROLB). The PDtrace fifo and the entire TCB are rese
based on an EJTAG reset. It is thus possible to set up the trace modes, etc., using the TAP controller, and then
processor core.

9.11 TCB Trigger logic

The TCB is optionally implemented with trigger unit. If this is the case, then the TCBCONFIGTRIG field is non-z
This section will explain some of the issues around triggers in the TCB.

9.11.1 Trigger units overview

A TCB trigger logic features three main parts.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 231

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

robe to
1. A common Trigger Source detection unit.

2. 1 to 8 separate Trigger Control units.

3. A common Trigger Action unit.

Figure 9-6 show the functional overview of the trigger flow in the TCB.

Figure 9-6 TCB Trigger processing overview

9.11.2 Trigger Source Unit

The TCB has three trigger sources:

1.Chip-level trigger input (TC_ChipTrigIn).

2. Probe trigger input (TR_TRIGIN).

3. Debug Mode (DM) entry indication from the processor core.

The input triggers are all rising-edge triggers, and the Trigger Source Units convert the edge into a single cycle st
the Trigger Control Units.

Trigger Control Logic 7

Trigger Control Logic 1

Trigger Control Logic 0

Trigger Control Unit 7

Trigger Control Unit 1

Trigger Control Unit 0

Trigger Action Unit

Trigger sources

Trigger strobes

Priority/
OR-function

Priority/
OR-function

Priority/
OR-function

Trigger Source Unit

Trigger control Unit
1 to 7 are optional,
when trigger logic is
implemented.

Depending on the trigger
action, the Action
strobes must pass
through a priority
function or an OR-gate
232 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.11 TCB Trigger logic

urces
ontrol

6

m, and
ritized

ce over
over

e

r

sed

f the
9.11.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them has it’s own Trigger Control Register (TCBTRIGx,
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger So
as possible trigger event and they can fire one or more of the Trigger Actions. This is all defined in the Trigger C
registerTCBTRIGx (seeSection 9.9.9, "TCBTRIGx Register (Reg 16-23)" on page 226).

9.11.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut).

2. Probe trigger output (TR_TRIGOUT).

3. Trace information. Put a programmable byte into the trace stream from the TCB.

4. Start, End or About (delayed end) control of theTCBCONTROLBEN bit.

The basic function of the trigger actions is explained inSection 9.9.9, "TCBTRIGx Register (Reg 16-23)" on page 22.
Please also read the nextSection 9.11.5, "Simultaneous triggers".

9.11.5 Simultaneous triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of the
whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Prio
and OR’ed.

9.11.5.1 Prioritized trigger actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes preceden
the higher numbered units. Thex in TCBTRIGx registers defines the number. The oldest trigger takes precedence
everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

• Trigger Start, End and About type triggers (TCBTRIGxType field set to 00, 01 or 10), which will assert/de-assert th
TCBCONTROLBEN bit. The About trigger is delayed and will always changeTCBCONTROLBEN because it is the
oldest trigger when it de-assertsTCBCONTROLBEN. An About trigger will not start the countdown if an even olde
About trigger is using the Trace Word counter.

• Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, theTCBTRIGxTR bit is set when the trigger fires. This is so even if a trigger action is suppres
by a higher priority trigger action. If the trigger is set to only fire once (theTCBTRIGxFO bit is set), then the suppressed
trigger action will not happen until afterTCBTRIGxTR is written 0.

If a Trigger action is suppressed by a higher priority trigger, then the read value, when theTCBTRIGxTR bit is set, for
theTCBTRIGxTrace field will be 0 for suppressed TF6 trace information actions. The read value in theTCBTRIGxType
field for suppressed Start/End/About triggers will be 11. This indication of a suppressed action is sticky. If any o
two actions (Trace and Type) are ever suppressed for a multi-fire trigger (theTCBTRIGxFO bit is zero), then the read
values in Trace and/or Type are set to indicate any suppressed action.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 233

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

n the

rigger,
in the

final
y

al-time

re good
ation,

the same
n to be

eed. In
limited
lower)

terface
:

ta.

ost of
aced
ed fifo
About trigger

The About triggers delayed de-assertion of theTCBCONTROLBEN bit is always executed, regardless of priority from
another Start trigger at the time of theTCBCONTROLBEN change. This means that if a simultaneous About trigger
action on theTCBCONTROLBEN bit (n/2 Trace Words after the trigger) and a Start trigger hit the same cycle, the
About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then a new About t
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11
TCBTRIGxType field. But, if theTCBTRIGxTrace bit is set, a TF6 trace information will still go in the trace.

9.11.5.2 OR’ed trigger actions

The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ed together to produce the
trigger. One or more expected trigger strobes on i.e.TC_ChipTrigOutcan thus disappear. External logic should not rel
on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.

9.12 EJTAG Trace cycle-by-cycle behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the re
behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

9.12.1 Fifo logic in PDtrace and TCB modules

Both the PDtrace module and the TCB module contain a fifo. This might seem like extra overhead, but there a
reasons for this. The vast majority of the information compression happens in the PDtrace module. Any data inform
like PC and load/store address values (delta or full), load/store data and processor mode changes, are all sent on
16 data bus to the TCB on the PDtrace™ interface. When an instruction requires more than 16 bits of informatio
traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock cycles.

In the TCB, the on-chip trace memory is defined as a 64-bit wide synchronous memory running at core-clock sp
this case the fifo is not needed. For off-chip trace through the Trace Probe, the fifo comes into play, because only a
number of pins (4, 8 or 16) exist. Also the speed of the Trace Probe interface can be different (either faster or s
from that of the 4KE core. So for off-chip tracing, a specific TCB TW fifo is needed.

9.12.2 Handling of Fifo overflow in the PDtrace module

Depending on the amount of trace information selected for trace, and the frequency with which the 16-bit data in
is needed, it is possible for the PDtrace fifo overflow from time to time. There are two ways to handle this case

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by back-stalling the core, until the fifo has enough empty slots to accept new trace da

The PDtrace fifo option is controlled by either theTraceControlIO or theTCBCONTROLAIO bit, depending on the setting
of TraceControlTS bit.

The first option is free of any cycle-by-cycle change whether trace is turned on or not. This is achieved at the c
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is tr
as if it was the start of the trace (processor mode and full PC are traced). This guarantees that only the un-trac
information is lost.
234 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.12 EJTAG Trace cycle-by-cycle behavior

ieved by
e
ing is

e
e is very

dth of
/4 of the

bits per

um

t be
ay to

e Trace

luding
"

crease

ning
k ratio
The second option guarantees that all the trace information is traced to the TCB. In some cases this is then ach
back-stalling the core pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trac
information from a new instruction. This option can obviously change the real-time behavior of the core when trac
turned on.

If PC trace information is the only thing enabled (inTraceControlMODE or TCBCONTROLAMODE, depending on the
setting ofTraceControlTS), and Trace of all branches is turned off (viaTraceControlTB or TCBCONTROLATB,
depending on the setting ofTraceControlTS), then the fifo is unlikely to overflow very often, if at all. This is of cours
very dependent on the code executed, and the frequency of exception handler jumps, but with this setting ther
little information overhead.

9.12.3 Handling of Fifo overflow in the TCB

The TCB also holds a fifo, used to buffer the TW’s which are sent off-chip through the Trace Probe. The data wi
the probe can be either 4, 8 or 16 pins, and the speed of these data pins can be from 16 times the core-clock to 1
core clock (the trace probe clock always runs at a double data rate multiple to the core-clock). SeeSection 9.12.3.1,
"Probe width and Clock-ratio settings" for a description of probe width and clock-ratio options. The combination
between the probe width (4, 8 or 16) and the data speed, allows for data rates through the trace probe from 256
core-clock cycle down to only 1 bit per core-clock cycle. The high extreme is not likely to be supported in any
implementation, but the low one might be.

The data rate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maxim
produce one full 64-bit TW per core-clock cycle. This is true for any selection of trace mode inTraceControlMODE or
TCBCONTROLAMODE. The PDtrace module will guarantee the limited amount of data. If the TCB data rate canno
matched by the off-chip probe width and data speed, then the TCB fifo can possibly overflow. There is only one w
handle this:

1. Prevent the overflow by asserting a stall-signal back to the core (PDI_StallSending). This will in turn stall the core
pipeline.

There is no way to guarantee that this back-stall from the TCB is never asserted, unless the effective data rate of th
Probe interface is at least 64-bits per core-clock cycle.

As a practical matter, the amount of data to the TCB can be minimized by only tracing PC information and exc
any cycle accurate information. This is explained inSection 9.12.2, "Handling of Fifo overflow in the PDtrace module
and below inSection 9.12.4, "Adding cycle accurate information to the trace". With this setting, a data rate of 8-bits per
core-clock cycle is usually sufficient. No guarantees can be given here, however, as heavy interrupt activity can in
the number of unpredictable jumps considerably.

9.12.3.1 Probe width and Clock-ratio settings

The actual number of data pins (4, 8 or 16) is defined by theTCBCONFIGPW field. Furthermore, the frequency of the
Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) is a double data rate clock. This
means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace clock is run
at clock ratio of 1:2 (one half) of core clock, the data output registers are running a core-clock frequency. The cloc
is set in theTCBCONTROLBCR field. The legal range for the clock ratio is defined inTCBCONFIGCRMax and
TCBCONFIGCRMin (both values inclusive). IfTCBCONTROLBCR is set to an unsupported value, the result is
UNPREDICABLE. The maximum possible value forTCBCONFIGCRMaxis 8:1 (TR_CLKis running 8 times faster than
core-clock). The minimum possible value forTCBCONFIGCRMin is 1:8 (TR_CLK is running at one eighth of the
core-clock). SeeTable 9-31 on page 222 for a description of the encoding of the clock ratio fields.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 235

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

 each

lihood

shown

defined
hen the

nal
a

ldest
cessor
oint,
9.12.4 Adding cycle accurate information to the trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between
instruction in the trace. This information is added to the trace, when theTCBCONTROLBCA bit is set. The overhead on
the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the like
of the TCB fifo overflowing.

9.13 TCB On-Chip Trace Memory

When on-chip trace memory is available (TCBCONFIGOnT is set) the memory is typically of smaller size than if it were
external in a trace probe. The assumption is that it is of some value to trace a smaller piece of the program.

With on-chip trace memory, the TCB can work in three possible modes:

1. Trace-From mode.

2. Trace-To mode.

3. Under Trigger unit control.

Software can select this mode using theTCBCONTROLBTM field. If one or more trigger control registers (TCBTRIGx)
are implemented, and they are using Start, End or About triggers, then the trace mode inTCBCONTROLBTM should be
set to Trace-To mode.

9.13.1 On-Chip Trace Memory size

The supported On-chip trace memory size can range from 256 byte to 8Mbytes, in powers of 2. The actual size is
in theTCBCONFIGSZ field.

9.13.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor enters into a processor mode/ASID value which is
to be traced or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is stopped w
buffer is full. The TCB then signals buffer full usingTCBCONTROLBBF. When external software polling this register
finds theTCBCONTROLBBF bit set, it can then read out the internal trace memory. Saving the trace into the inter
buffer will re-commence again only when theTCBCONTROLBBF bit is reset and if the core is sending valid trace dat
(i.e.,PDO_IamTracing not equal 0).

9.13.3 Trace-To Mode

In the Trace-To mode, the TCB keeps writing into the internal trace memory, wrapping over and overwriting the o
information, until the processor is reaches an end of trace condition. End of trace is reached by leaving the pro
mode/ASID value which is traced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this p
the on-chip trace buffer is then dumped out in a manner similar to that described above inSection 9.13.2, "Trace-From
Mode".
236 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

ediate,

rmats

ated
Chapter 10

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Imm
Jump, and Register. Refer toChapter 11, “4KE™ Processor Core Instructions,”for a complete listing and description of
instructions.

This chapter discusses the following topics

• Section 10.1, "CPU Instruction Formats" on page 237

• Section 10.2, "Load and Store Instructions" on page 238

• Section 10.3, "Computational Instructions" on page 239

• Section 10.4, "Jump and Branch Instructions" on page 240

• Section 10.5, "Control Instructions" on page 240

• Section 10.6, "Coprocessor Instructions" on page 240

• Section 10.7, "Enhancements to the MIPS Architecture" on page 241

10.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction fo
immediate (I-type), jump (J-type), and register (R-type)—as shown inFigure 10-1 on page 238. The use of a small
number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complic
(and less frequently used) operations and addressing modes from these three formats as needed.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 237

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

al

ter;
of load

ode.
Figure 10-1 Instruction Formats

10.2 Load and Store Instructions

Load and store instructions are immediate (I-type) instructions that move data between memory and the gener
registers. The only addressing mode that load and store instructions directly support isbase register plus 16-bit signed
immediate offset.

10.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called adelayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as theload delay
slot.

In a 4KE core, the instruction immediately following a load instruction can use the contents of the loaded regis
however in such cases hardware interlocks insert additional real cycles. Although not required, the scheduling
delay slots can be desirable, both for performance and R-Series processor compatibility.

10.2.2 Defining Access Types

Access type indicates the size of a core data item to be loaded or stored, set by the load or store instruction opc

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) register or branch
condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

I-Type (Immediate)

R-Type (Register)

J-Type (Jump)

immediate

015

rt

1620

op

2631

rs

2125

target

015

op

2631

rt

1620

op

2631

rs

2125

sa

610

rd

1115

funct

05

target

025

op

2631
238 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

10.3 Computational Instructions

ddressed
n, the

dressed
Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the a
field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian configuratio
low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the ad
word as shown inTable 10-1. Only the combinations shown inTable 10-1 are permissible; other combinations cause
address error exceptions.

10.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in
immediate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

– Arithmetic

– Logical

– Shift

– Multiply

– Divide

These operations fit in the following four categories of computational instructions:

– ALU Immediate instructions

– Three-operand Register-type Instructions

– Shift Instructions

– Multiply And Divide Instructions

Table 10-1 Byte Access Within a Word

Bytes Accessed

Low Order
Address Bits

Big Endian
(31---------------------0)

Little Endian
(31---------------------0)

Access Type 2 1 0 Byte Byte

Word 0 0 0 0 1 2 3 3 2 1 0

Triplebyte
0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

Halfword
0 0 0 0 1 1 0

0 1 0 2 3 3 2

Byte

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 239

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

ough
 is

come

delay
n in

th of

d Link
eral

to the
10.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue thr
the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply instruction
followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product does be
available. Refer toChapter 2, “Pipeline of the 4KE™ Core,” on page 13for more information on instruction latency and
repeat rates.

10.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
of one instruction: that is, the instruction immediately following the jump or branch (this is known as the instructio
thedelay slot) always executes while the target instruction is being fetched from storage.

10.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, bo
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump an
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the gen
purpose registers.

For more information about jump instructions, refer to the individual instructions inSection 11.3, "MIPS32™
Instruction Set for the 4KE™ core" on page 245.

10.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot
16-bitoffset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

10.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

10.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory
management and exception handling facilities of the processor. Refer toChapter 11, “4KE™ Processor Core
Instructions,” on page 242 for a listing of CP0 instructions.
240 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

10.7 Enhancements to the MIPS Architecture

PR

PR

the
ult.

written

ord
ce

g value

alue
-bit

value
10.7 Enhancements to the MIPS Architecture

The core execution unit implements the MIPS32 architecture, which includes the following instructions.

• CLOCount Leading Ones

• CLZCount Leading Zeros

• MADDMultiply and Add Word

• MADDUMultiply and Add Unsigned Word

• MSUBMultiply and Subtract Word

• MSUBUMultiply and Subtract Unsigned Word

• MULMultiply Word to Register

• SSNOPSuperscalar Inhibit NOP

10.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in the GPRrs is scanned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written to the Grd.
If all 32 bits are set in the GPRrs, the result written to the GPRrd is 32.

10.7.2 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in the GPRrs is scanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to the Grd.
If all 32 bits are cleared in the GPRrs, the result written to the GPRrd is 32.

10.7.3 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word value in
GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64-bit res
The product is added to the 64-bit concatenated values in the HI and LO register pair. The resulting value is then
back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

10.7.4 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 32-bit w
value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as unsigned values, to produ
a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The resultin
is then written back to the HI and LO registers. No arithmetic exception occurs under any conditions.

10.7.5 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit word v
in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64
result. The product is subtracted from the 64-bit concatenated values in the HI and LO register pair. The resulting
is then written back to the HI and LO registers. No arithmetic exception occurs under any circumstances.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 241

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

2-bit
 to
air. The
tances.

he
10.7.6 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair. The 3
word value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as unsigned values,
produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO register p
resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any circums

10.7.7 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in the GPRrs is
multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64-bit result. T
least-significant 32-bits of the product are written to the GPRrd. The contents of the HI and LO register pair are not
defined after the operation. No arithmetic exception occurs under any circumstances.

10.7.8 SSNOP- Superscalar Inhibit NOP

The MIPS32 4KE processor cores treat this instruction as a regular NOP.
242 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 243

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

244 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.1 Understanding the Instruction Descriptions

pecific

tion set

ion

tion.

s

Chapter 11

4KE™ Processor Core Instructions

This chapter supplements the MIPS32 Architecture Reference Manual by describing instruction behavior that is s
to a MIPS32™ 4KE™ processor core. The chapter is divided into the following sections:

• Section 11.1, "Understanding the Instruction Descriptions" on page 245

• Section 11.2, "4KE™ Opcode Map" on page 245

• Section 11.3, "MIPS32™ Instruction Set for the 4KE™ core" on page 248

The 4KE processor core also supports the MIPS16 ASE to the MIPS32 architecture. The MIPS16 ASE instruc
is described inChapter 12, “MIPS16 Application-Specific Extension to the MIPS32 Instruction Set,” on page 280.

11.1 Understanding the Instruction Descriptions

Refer to Volume II of the MIPS32 Architecture Reference Manual for more information about the instruction
descriptions. There is a description of the instruction fields, definition of terms, and a description function notat
available in that document.

11.2 4KE™ Opcode Map

Key

• CAPITALIZED text indicates an opcode mnemonic

• Italicized text indicates to look at the specified opcode submap for further instruction bit decode

• Entries containing theα symbol indicate that a reserved instruction fault occurs if the core executes this instruc

• Entries containing theβ symbol indicate that a coprocessor unusable exception occurs if the core executes thi
instruction

Table 11-1 Encoding of theOpcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 Special RegImm J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 β COP2 β BEQL BNEL BLEZL BGTZL

3 011 α α α α Special2 JALX α Special3

4 100 LB LH LWL LW LBU LHU LWR α
5 101 SB SH SWL SW α α SWR CACHE

6 110 LL β LWC2 PREF α β α α
7 111 SC β SWC2 α α β α α
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 245

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 11 4KE™ Processor Core Instructions
Table 11-2Special Opcode encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL β SRL/
ROTR SRA SLLV α SRLV/

ROTRV SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK α SYNC

2 010 MFHI MTHI MFLO MTLO α α α α
3 011 MULT MULTU DIV DIVU α α α α
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 α α SLT SLTU α α α α
6 110 TGE TGEU TLT TLTU TEQ α TNE α
7 111 α α α α α α α α

Table 11-3Special2 Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL α MSUB MSUBU α α
1 001 α α α α α α α α
2 010

UDI1 or α

1. CorExtend instructions are a build-time option of the 4KE Pro cores, if not implemented this instructions space will cause a reserved
instruction exception. If assembler support exists, the mnemonics for CorExtend instructions are most likely UDI0, UDI1, ..,
UDI15.

3 011

4 100 CLZ CLO α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α α α α α SDBBP

Table 11-4Special3 Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 EXT α α α INS α α α
1 001 α α α α α α α α
2 010 α α α α α α α α
3 011 α α α α α α α α
4 100 BSHFL α α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α RDHWR α α α α
246 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.2 4KE™ Opcode Map
Table 11-5RegImm Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL BGEZL α α α α
1 01 TGEI TGEIU TLTI TLTIU TEQI α TNEI α
2 10 BLTZAL BGEZAL BLTZALL BGEZALL α α α α
3 11 α α α α α α α SYNCI

Table 11-6COP2 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2 α CFC2 MFHC2 MTC2 α CTC2 MTHC2

1 01 BC2 BC21

1. The core will treat the entire row as aBC2 instruction. However compiler and assembler support only exists for the first one. Some
compiler and assembler products may allow the user to add new instructions.

2 10
CO

3 11

Table 11-7COP2 Encoding of rt Field When rs=BC2

rt bits 16

bits 17 0 1

0 BC2F BC2T

1 BC2FL BC2TL

Table 11-8COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 α α α MTC0 α α α
1 01 α α RDPGPR MFMC0 α α WRPGPR α
2 10

CO
3 11
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 247

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 11 4KE™ Processor Core Instructions

.
r

11.3 MIPS32™ Instruction Set for the 4KE™ core

This section describes the MIPS32 instructions for the 4KE cores.Table 11-10lists the instructions in alphabetical order
Instructions that have implementation dependent behavior are described afterwards. The descriptions for othe
instructions exist in the architecture reference manual and are not duplicated here.

Table 11-9COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 α TLBR TLBWI α α α TLBWR α
1 001 TLBP α α α α α α α
2 010 α α α α α α α α
3 011 ERET IACK α α α α α DERET

4 100 WAIT α α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α α α α α α

Table 11-10 Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset) PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BC2F Branch On COP2 Condition False if COP2Condition(cc) == 0
PC += (int)offset

BC2FL Branch On COP2 Condition False Likely

if COP2Condition(cc) == 0
PC += (int)offset

else
Ignore Next Instruction

BC2T Branch On COP2 Condition True if COP2Condition(cc) == 1
PC += (int)offset

BC2TL Branch On COP2 Condition True Likely

if COP2Condition(cc) == 1
PC += (int)offset

else
Ignore Next Instruction

BEQ Branch On Equal if Rs == Rt
PC += (int)offset
248 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.3 MIPS32™ Instruction Set for the 4KE™ core
BEQL Branch On Equal Likely

if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely

if !Rs[31] && Rs != 0
PC += (int)offset

else
 Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely

if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link
GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely

GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely

if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

BNEL Branch on Not Equal Likely

if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

Table 11-10 Instruction Set (Continued)

Instruction Description Function
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 249

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 11 4KE™ Processor Core Instructions
CACHE Cache Operation See Cache Description

CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP0 Coprocessor 0 Operation See Coprocessor Description

COP2 Coprocessor 2 Operation See Coprocessor 2 Description

CTC2 Move Control Word To Coprocessor 2 CCR[2, n] = Rt

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Disable Interrupts
Rt=Status

StatusIE=0

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier Stall until execution hazards are
cleared

EI Enable Interrupts
Rt=Status

StatusIE=1

ERET Return from Exception

if SR[2]
PC = ErrorEPC

else
PC = EPC

SR[1] = 0
SR[2] = 0
LL = 0

EXT Extract Bit Field Rt=ExtractField(Rs,msbd,lsb)

INS Insert Bit Field Rt=InsertField(Rt,Rs,msb,lsb)

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier

Rd = PC + 8
PC = Rs

Stall until all execution and
instruction hazards are cleared

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier

PC = Rs

Stall until all execution and
instruction hazards are cleared

Table 11-10 Instruction Set (Continued)

Instruction Description Function
250 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.3 MIPS32™ Instruction Set for the 4KE™ core
LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word
Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWC2 Load Word To Coprocessor 2 CPR[2, n, 0] = Mem[Rs+offset]

LWL Load Word Left See LWL instruction.

LWR Load Word Right See LWR instruction.

MADD Multiply-Add HI, LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI, LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel]

MFC2 Move From Coprocessor 2 Rt = CPR[2, n, sel31..0]

MFHC2 Move From High Word Coprocessor2 Rt= CPR[2,n,sel]63..32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero if GPR[rt] ≠ 0 then
GPR[rd]= GPR[rs]

MOVZ Move Conditional on Zero if GPR[rt] = 0 then
GPR[rd]= GPR[rs]

MSUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, sel] = Rt

MTC2 Move To Coprocessor 2 CPR[2, n, sel]31..0 = Rt

MTHC2 Move To High Word Coprocessor 2 CPR[2, n, sel]63..32 = Rt

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable
Rd = LO

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

Table 11-10 Instruction Set (Continued)

Instruction Description Function
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 251

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 11 4KE™ Processor Core Instructions
NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache

RDHWR Read HardWare Register Rt=HWR[Rd]

RDPGPR Read GPR from Previous Shadow Set Rd=SGPR[SRSCtlPSS, Rt]

ROTR Rotate Word Right Rd = Rtsa-1..0 || Rt31..sa

ROTRV Rotate Word Right Variable Rd = RtRs-1..0 || Rt31..Rs

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word
if LL =1
mem[Rxoffs] = Rt

Rt = LL

SDBBP Software Debug Breakpoint Trap to SW Debug Handler

SEB Sign Extend Byte Rd=SignExtend(Rt7..0)

SEH Sign Extend Half Rd=SignExtend(Rt15..0)

SH Store Halfword (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than

if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate

if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned

if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned

if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation Nop

SUB Integer Subtract Rt = (int)Rs - (int)Rd

Table 11-10 Instruction Set (Continued)

Instruction Description Function
252 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.3 MIPS32™ Instruction Set for the 4KE™ core
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2, n, 0]

SWL Store Word Left See SWL instruction description.

SWR Store Word Right See SWR instruction description.

SYNC Synchronize See SYNC instruction below.

SYNCI Synchronize Caches to Make Instruction
Writes Effective

Force D$ writeback and I$
invalidate on specified address

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
TrapException

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed
TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException

TLBP Probe TLB for Matching Entry See TLBP instruction below.

TLBR Read Index for TLB Entry See TLBR instruction below.

TLBWI Write Indexed TLB Entry See TLBWI instruction below.

TLBWR Write Random TLB Entry See TLBWR instruction below.

TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException

TNE Trap if Not Equal if Rs != Rt
TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS,Rd]=Rt

WSBH Word Swap Bytes within Halfwords Rd=SwapBytesWithinHalfs(Rt)

Table 11-10 Instruction Set (Continued)

Instruction Description Function
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 253

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 11 4KE™ Processor Core Instructions
XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table 11-10 Instruction Set (Continued)

Instruction Description Function
254 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

ss. The
ache as
CACHE

Format: CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective addre
effective address is used in one of the following ways based on the operation to be performed and the type of c
described in the following table.

31 26 25 21 20 16 15 0

CACHE

101111
base op offset

6 5 5 16

Table 11-11 Usage of Effective Address

Operation
Requires an

Type of
Cache Usage of Effective Address

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← Addr WayBit-1..IndexBit
Index ← Addr IndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value
fully specifies the cache tag. This is shown symbolically in the figure below.

Perform Cache Operation CACHE
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 255

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

dex
ould use
r TLB

ddress

ple, if
ed via a
ion is
r Index

n of the
instruc-

tions,
ns are
Figure 11-1 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For in
operations (where the address is used to index the cache but need not match the cache tag) software sh
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions no
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an A
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For exam
a Writeback operation detects a cache or bus error during the processing of the operation, that error is report
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruct
terminated in an error. However, cache error exceptions should must be triggered by an Index Load Tag o
Store tag operation, as these operations are used for initialization and diagnostic purposes.

An address Error Exception (with cause code equal AdEL) occurs if the effective address references a portio
kernel address space which would normally result in such an exception.Data watch is not triggered by a cache
tion whose address matches the Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform.On Index Load Tag and Index Store Data opera
the specific word that is addressed is loaded into / read from the DataLo register. All other cache instructio
line-based and the word and byte indexes will not affect their operation.

Table 11-12 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

2#00 I Primary Instruction

2#01 D Primary Data

2#10 T Not supported

2#11 S Not supported

Perform Cache Operation CACHE

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index
256 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Table 11-13 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#000

I Index Invalidate Index

Set the state of the cache block at the specified
index to invalid.

This encoding may be used by software to
invalidate the entire instruction cache by
stepping through all valid indices.

D Index Writeback
Invalidate

Index If the state of the cache block at the specified
index is valid and dirty, write the block back to
the memory address specified by the cache tag.
After that operation is completed, set the state
of the cache block to invalid. If the block is
valid but not dirty, set the state of the block to
invalid.

This encoding may be used by software to
invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
powerup.

Yes

S, T Reserved Index No

2#001 I,D Index Load Tag Index

Read the tag for the cache block at the specified
index into theTagLo Coprocessor 0 register.
Also read the data corresponding to the byte
index into theDataLo register.

Yes

2#010 I,D Index Store Tag Index

Write the tag for the cache block at the
specified index from theTagLoCoprocessor 0
register.

This encoding may be used by software to
initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that theTagLo andTagHi registers
associated with the cache be initialized first.

Yes

2#011 All Reserved Unspecified
Executed as a no-op.

No

Perform Cache Operation CACHE
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 257

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2#100

I, D Hit Invalidate Address
If the cache block contains the specified
address, set the state of the cache block to
invalid.

This encoding may be used by software to
invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

Yes

S, T Reserved Address
No

2#101

I Fill Address

Fill the cache from the specified address.

The cache line is refetched even if it is already
in the cache. Yes

D Hit Writeback
Invalidate

Address If the cache block contains the specified
address and it is valid and dirty, write the
contents back to memory. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.This encoding may
be used by software to invalidate a range of
addresses from the data cache by stepping
through the address range by the line size of the
cache.

Yes

S, T Reserved Address
No

2#110

D Hit Writeback Address

If the cache block contains the specified
address and it is valid and dirty, write the
contents back to memory. After the operation is
completed, leave the state of the line valid, but
clear the dirty state.

Yes

S, T Reserved Address No

Table 11-13 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?
258 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2#111 I, D Fetch and Lock Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. The
way selected on fill from memory is the least
recently used.

The lock state is cleared by executing an Index
Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation with the lock bit reset in
theTagLo register.

Yes

Table 11-13 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 259

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Table 11-14 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set. ErrCtl[SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#001 I, D Index Load WS Index Read the WS RAM at the specified index into
theTagLo Coprocessor 0 register. Yes

2#010 I, D Index Store WS Index Update the WS RAM at the specified index
from theTagLo Coprocessor 0 register. Yes

2#011 I, D Index Store Data Index Write the DataLo Coprocessor 0 register
contents at the way and byte index specified. Yes

All
Others All All of the other codes behave the same as when

ErrCtl[WST] is cleared.

Table 11-15 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#001 I, D Index Load Tag Index

Read the SPRAM tag at the specified index into
theTagLoCoprocessor 0 register. Also read the
data corresponding to the byte index into the
DataLo register

Yes

2#010 I, D Index Store Tag Index Update the SPRAM tag at the specified index
from theTagLo Coprocessor 0 register. Yes

2#011 I, D Index Store Data Index
Write the DataLo Coprocessor 0 register
contents into the SPRAM at the word index
specified.

Yes

All
Others All All of the other codes behave the same as when

ErrCtl[SPR] is cleared.
260 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

che-
Restrictions:

The operation of this instruction isUNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction isUNDEFINED if the operaation requires an address, and that address is unca
able.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

Coprocessor Unusable Exception

TLB Refill Exception.

TLB Invalid Exception

Address Error Exception

Bus Error Exception

Perform Cache Operation (cont.) CACHE
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 261

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

s for

ed and

rocessor.
e RMW
and suc-

fail on

MW

not, the
nta-

ress is
LL

Format: LL rt, offset(base) MIPS32

Purpose:

To load a word from memory for an atomic read-modify-write

Description: rt ← memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operation
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetch
written into GPRrt. The 16-bit signedoffset is added to the contents of GPRbase to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per p
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. Th
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the R
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is
result inUNPREDICTABLE . Which storage is synchronizable is a function of both CPU and system impleme
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective add
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

31 26 25 21 20 16 15 0

LL

110000
base rt offset

6 5 5 16

Load Linked Word LL
262 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Load Linked Word (cont.) LL
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 263

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

perfor-
cluding
a pro-
e of the

alter the

eption, the
tion that

emory
store to

des the
tation

reFor-
PREF

Format: PREF hint,offset(base) MIPS32

Purpose:

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signedoffsetto the contents of GPRbaseto form an effective byte address. Thehint field sup-
plies information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically prefetching the data into cache, to improve program
mance. The action taken for a specific PREF instruction is both system and context dependent. Any action, in
doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of
gram. Implementations are expected either to do nothing, or to take an action that increases the performanc
program. The PrepareForStore function is unique in that it may modify the architecturally visible state.

PREF is an advisory instruction that may change the performance of the program. However, for allhint values except
for PrepareForStore, and all effective addresses, it neither changes the architecturally visible state nor does it
meaning of the program.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exc
exception condition is ignored and no data movement occurs. However even if no data is prefetched, some ac
is not architecturally visible, such as writeback of a dirty cache line, can take place.

PREF never generates a memory operation for a location with anuncached memory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the m
access type of the effective address, just as it would be if the memory operation had been caused by a load or
the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that inclu
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implemen
specific.

Thehint field supplies information about the way the data is expected to be used. With the exception of Prepa
Store, ahint value cannot cause an action to modify architecturally visible state. A processor may use ahint value to
improve the effectiveness of the prefetch action.

31 26 25 21 20 16 15 0

PREF

110011
base hint offset

6 5 5 16

Prefetch PREF
264 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

ans-
to be
Any of the following conditions causes the core to treat a PREF instruction as a NOP.

• A reservedhint value is used

• The address has a translation error

• The address maps to an uncacheable page

In all other cases, except whenhint equals 25, execution of the PREF instruction initiates an external bus read tr
action. PREF is a non-blocking operation and does not cause the pipeline to stall while waiting for the data
returned.

Prefetch (cont.) PREF
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 265

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Table 11-16 Values of thehint Field for the PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load
Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

1 store
Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

2-3 Reserved Reserved - treated as a NOP.

4 load_streamed

Use: Prefetched data is expected to be read (not modified) but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it
does not displace data prefetched as “retained.”

5 store_streamed

Use: Prefetched data is expected to be stored or modified but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that
it does not displace data prefetched as “retained.”

6 load_retained

Use: Prefetched data is expected to be read (not modified) and
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it
is not displaced by data prefetched as “streamed.”

7 store_retained

Use: Prefetched data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that
it is not displaced by data prefetched as “streamed.”

Prefetch (cont.) PREF
266 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

8-24 Reserved Reserved - treated as a NOP.

25 writeback_invalidate
(also known as “nudge”)

Use: Data is no longer expected to be used.

Action: Schedule a writeback of any dirty data. The cache line is
marked as invalid upon completion of the writeback. If cache line is
clean or locked, no action is taken.

26-29 Reserved Reserved - treated as a NOP.

30
PrepareForStore Use: Prepare the cache for writing an entire line, without the

overhead involved in filling the line from memory.

Reserved - treated as a NOP.

31 Reserved Reserved - treated as a NOP.

Table 11-16 Values of thehint Field for the PREF Instruction
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 267

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

e TLB.
prefetch

ss pointer
Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in th
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an addre
value before the validity of a pointer is determined.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Prefetch (cont.) PREF
268 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

syn-

ress.

omplete

il; the

.

s

me
oherence
SC

Format: SC rt, offset(base) MIPS32

Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for
chronizable memory locations.

The 32-bit word in GPRrt is conditionally stored in memory at the location specified by the aligned effective add
The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To c
the RMW sequence atomically, the following occur:

• The 32-bit word of GPRrt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPRrt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPRrt.

If the following event occurs between the execution of LL and SC, the SC fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fa
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguou
region of virtual memory. (The region does not have to be aligned, other than the alignment required for
instruction words.)

The following conditions must be true or the result of the SC isUNPREDICTABLE :

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the sa
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-c
algorithm are identical.

31 26 25 21 20 16 15 0

SC

111000
base rt offset

6 5 5 16

Store Conditional Word SC
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 269

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

ero, an
Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 0 31 || LLbit

Store Conditional Word (cont.) SC
270 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

mples of
re emu-

n

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some exa
these are arithmetic operations that trap, system calls, and floating point operations that trap or require softwa
lation assistance.

LL and SC function on a single processor forcached noncoherentmemory so that parallel programs can be run o
uniprocessor systems that do not supportcached coherent memory access types.

Store Conditional Word (cont.) SC
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 271

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

NC

isible to

ible

ed
s such,
SYNC

Format: SYNC (stype = 0 implied) MIPS32

Purpose:

To order loads and stores.

Description:

Simple Description:

• SYNC affects onlyuncachedandcached coherentloads and stores. The loads and stores that occur before the SY
must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is v
every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference results are vis
across operating mode changes. For example, a SYNC is required on entry to and exit from Debug Mode to
guarantee that memory affects are handled correctly.

Detailed Description:

• SYNC does not guarantee the order in which instruction fetches are performed. Thestype values 1-31 are reserved
for future extensions to the architecture. A value of zero will always be defined such that it performs all defin
synchronization operations. Non-zero values may be defined to remove some synchronization operations. A
software should never use a non-zero value of thestype field, as this may inadvertently cause future failures if
non-zero values remove synchronization operations.

• The SYNC instruction stalls until all loads, stores, refills are completed and all write buffers are empty.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000 0000 0
stype

SYNC

001111

6 15 5 6

Synchronize Shared Memory SYNC
272 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other thanuncachedandcached
coherent is UNPREDICTABLE .

Operation:
SyncOperation(stype)

Exceptions:

None

Synchronize Shared Memory (cont.) SYNC
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 273

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

to

TLB
TLBR

Format: TLBR MIPS32

Purpose:

To read an entry from the TLB.

Description:

TheEntryHi, EntryLo0, EntryLo1, andPageMaskregisters are loaded with the contents of the TLB entry pointed
by the Index register. Note that the value written to theEntryHi, EntryLo0, andEntryLo1registers may be different
from that originally written to the TLB via these registers in that:

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBR

000001

6 1 19 6

Read Indexed TLB Entry TLBR
274 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i] Mask
EntryHi ←

TLB[i] VPN2 ||
05 || TLB[i] ASID

EntryLo1 ← 0 2 ||
TLB[i] PFN1 ||
TLB[i] C1 || TLB[i] D1 || TLB[i] V1 || TLB[i] G

EntryLo0 ← 0 2 ||
TLB[i] PFN0 ||
TLB[i] C0 || TLB[i] D0 || TLB[i] V0 || TLB[i] G

Exceptions:

Coprocessor Unusable

Read Indexed TLB Entry TLBR
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 275

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

TLB
TLBWI

Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by theIndex register.

Description:

The TLB entry pointed to by the Index register is written from the contents of theEntryHi, EntryLo0, EntryLo1, and
PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi, EntryLo0,
andEntryLo1 registers, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1
registers.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWI

000010

6 1 19 6

Write Indexed TLB Entry TLBWI
276 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Index
TLB[i] Mask ← PageMaskMask
TLB[i] VPN2 ← EntryHi VPN2
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Write Indexed TLB Entry TLBWI
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 277

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

TLBWR

Format: TLBWR MIPS32

Purpose:

To write a TLB entry indexed by theRandom register.

Description:

The TLB entry pointed to by theRandomregister is written from the contents of theEntryHi, EntryLo0, EntryLo1,
and PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi,
EntryLo0, andEntryLo1 registers, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1
registers.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWR

000110

6 1 19 6

Write Random TLB Entry TLBWR
278 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Random
TLB[i] Mask ← PageMaskMask
TLB[i] VPN2 ← EntryHi VPN2
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Write Random TLB Entry TLBWR
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 279

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

sts are
eset) is

se the

n and

a

WAIT

Format: WAIT MIPS32

Purpose:

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external reque
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or SI_ColdR
signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the 4KE core does not u
code field in this instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instructio
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processor isUNDEFINED if a WAIT instruction is placed in the delay slot of a branch or
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1
Implementation-Dependent Code

WAIT

100000

6 1 19 6

Enter Standby Mode WAIT
280 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Operation:

I: Enter lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

Enter Standby Mode (cont.) WAIT
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 281

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 282

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 283

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

284 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

12.1 Instruction Bit Encoding

t

.

Chapter 12

MIPS16 Application-Specific Extension to the MIPS32 Instruction Se

This chapter describes the MIPS16 ASE as implemented in the 4KE core. Refer to Volume IV-a of the MIPS32
Architecture Reference Manual for a general description of the MIPS16 ASE as well as instruction descriptions

 This chapter covers the following topics:

• Section 12.1, "Instruction Bit Encoding" on page 284

• Section 12.2, "Instruction Listing" on page 286

12.1 Instruction Bit Encoding

Table 12-2 throughTable 12-9 describe the encoding used for the MIPS16 ASE.Table 12-1 describes the meaning of
the symbols used in the tables.

Table 12-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction cause a Reserved Instruction Exception.

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction cause a Reserved Instruction Exception.

θ

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc.
when one of these encodings is used. If no instruction is encoded with this value, executing such
an instruction must cause a Reserved Instruction Exception (SPECIAL2encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

σ
Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 285

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 12 MIPS16 Application-Specific Extension to the MIPS32 Instruction Set
Table 12-2 MIPS16 Encoding of the Opcode Field

opcode bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 ADDIUSP1

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction

ADDIUPC2

2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction

B JAL(X)δ BEQZ BNEZ SHIFTδ β
1 01 RRI-Aδ ADDIU83

3. The ADDIU8 opcode is used by the ADDIU rx, immediate instruction

SLTI SLTIU I8 δ LI CMPI β
2 10 LB LH LWSP4

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

LW LBU LHU LWPC5

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

β
3 11 SB SH SWSP6

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

SW RRRδ RRδ EXTENDδ β

Table 12-3 MIPS16 JAL(X) Encoding of the x Field

x bit 26

0 1

JAL JALX

Table 12-4 MIPS16 SHIFT Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

SLL β SRL SRA

Table 12-5 MIPS16 RRI-A Encoding of the f Field

f bit 4

0 1

ADDIU1

1. The ADDIU function is used by the AD-
DIU ry, rx, immediate instruction

β

Table 12-6 MIPS16 I8 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

BTEQZ BTNEZ SWRASP1

1. The SWRASP function is used by the SW ra, offset(sp) instruction

ADJSP2

2. The ADJSP function is used by the ADDIU sp, immediate instruction

SVRSδ MOV32R3

3. The MOV32R function is used by the MOVE r32, rz instruction

* MOVR324

4. The MOVR32 function is used by the MOVE ry, r32 instruction
286 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

12.2 Instruction Listing
12.2 Instruction Listing

Table 12-12 through12-19 list the MIPS16 instruction set.

Table 12-7 MIPS16 RRR Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

β ADDU β SUBU

Table 12-8 MIPS16 RR Encoding of the Funct Field

funct bits 2..0

0 1 2 3 4 5 6 7

bits 4..3 000 001 010 011 100 101 110 111

0 00 J(AL)R(C)δ SDBBP SLT SLTU SLLV BREAK SRLV SRAV

1 01 β * CMP NEG AND OR XOR NOT

2 10 MFHI CNVTδ MFLO β β * β β
3 11 MULT MULTU DIV DIVU β β β β

Table 12-9 MIPS16 I8 Encoding of the s Field when funct=SVRS

s bit 7

0 1

RESTORE SAVE

Table 12-10 MIPS16 RR Encoding of the ry Field when funct=J(AL)R(C)

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

JR rx JR ra JALR * JRC rx JRC ra JALRC *

Table 12-11 MIPS16 RR Encoding of the ry Field when funct=CNVT

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

ZEB ZEH β * SEB SEH β *

Table 12-12 MIPS16 Load and Store Instructions

Mnemonic Instruction
Extensible
Instruction

LB Load Byte Yes

LBU Load Byte Unsigned Yes

LH Load Halfword Yes
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 287

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 12 MIPS16 Application-Specific Extension to the MIPS32 Instruction Set
LHU Load Halfword Unsigned Yes

LW Load Word Yes

SB Store Byte Yes

SH Store Halfword Yes

SW Store Word Yes

Table 12-13 MIPS16 Save and Restore Instructions

Mnemonic Instruction
Extensible
Instruction

RESTORE Restore Registers and Deallocate Stack Frame Yes

SAVE Save Registers and Setup Stack Frame Yes

Table 12-14 MIPS16 ALU Immediate Instructions

Mnemonic Instruction
Extensible
Instruction

ADDIU Add Immediate Unsigned Yes

CMPI Compare Immediate Yes

LI Load Immediate Yes

SLTI Set on Less Than Immediate Yes

SLTIU Set on Less Than Immediate Unsigned Yes

Table 12-15 MIPS16 Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible
Instruction

ADDU Add Unsigned No

AND AND No

CMP Compare No

MOVE Move No

NEG Negate No

NOT Not No

OR OR No

SEB Sign-Extend Byte No

SEH Sign-Extend Halfword No

Table 12-12 MIPS16 Load and Store Instructions

Mnemonic Instruction
Extensible
Instruction
288 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

12.2 Instruction Listing
SLT Set on Less Than No

SLTU Set on Less Than Unsigned No

SUBU Subtract Unsigned No

XOR Exclusive OR No

ZEB Zero-Extend Byte No

ZEH Zero-Extend Halfword No

Table 12-16 MIPS16 Special Instructions

Mnemonic Instruction
Extensible
Instruction

BREAK Breakpoint No

SDBBP Software Debug Breakpoint No

EXTEND Extend No

Table 12-17 MIPS16 Multiply and Divide Instructions

Mnemonic Instruction
Extensible
Instruction

DIV Divide No

DIVU Divide Unsigned No

MFHI Move From HI No

MFLO Move From LO No

MULT Multiply No

MULTU Multiply Unsigned No

Table 12-18 MIPS16 Jump and Branch Instructions

Mnemonic Instruction
Extensible
Instruction

B Branch Unconditional Yes

BEQZ Branch on Equal to Zero Yes

BNEZ Branch on Not Equal to Zero Yes

BTEQZ Branch on T Equal to Zero Yes

BTNEZ Branch on T Not Equal to Zero Yes

JAL Jump and Link No

Table 12-15 MIPS16 Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible
Instruction
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 289

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 12 MIPS16 Application-Specific Extension to the MIPS32 Instruction Set
JALR Jump and Link Register No

JALRC Jump and Link Register Compact No

JALX Jump and Link Exchange No

JR Jump Register No

JRC Jump Register Compact No

Table 12-19 MIPS16 Shift Instructions

Mnemonic Instruction
Extensible
Instruction

SRA Shift Right Arithmetic Yes

SRAV Shift Right Arithmetic Variable No

SLL Shift Left Logical Yes

SLLV Shift Left Logical Variable No

SRL Shift Right Logical Yes

SRLV Shift Right Logical Variable No

Table 12-18 MIPS16 Jump and Branch Instructions

Mnemonic Instruction
Extensible
Instruction
290 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 290

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Appendix A

Revision History

Table A-1 Revision History

Revision Date Description

0.90 November 13, 2000 First preliminary version

0.91 November 17, 2000

Changes for this revision:

• Added LWC2 and SWC2 to opcode mapTable 11-1 on page
245

• Updated TagLo CP0 register format for new handling of LRU
bits

• Added ErrCtl CP0 register

• Added more details to WS description in cache chapter

• Added description of how to test the cache arrays in software.

0.93 February 16, 2001

• Instruction and data micro TLBs in the 4KEc are now 4
entries (previously 3).

• Added support for 64KB maximum cache sizes.

• Added support for write-through with write-allocate cache
policy.

• Enhanced description of PrID revision field.

• Added discussion about virtual aliasing in the caches.

01.00 March 27, 2001

• Removed extraneous reference to “Supervisor mode” in Table
11-1 on page 191, since Supervisor mode is not supported.

• Standardized links to major sections in each chapter.

• Added SimpleBE & UDI config bits. Cleaned up description
of Config registers.

• Added note about ASID field inEntryHi not being updated on
an exception.

• Updated descriptions of CACHE, PREF, and SYNC to
include processor specific information.

01.01 April 2, 2001 • Added note that it is invalid to have all ways locked in the data
cache (no longer invalid, superseded by revision 1.07).

01.02 May 16, 2001 • Added WST=1 table to CACHE instruction description

01.03 June 12, 2001

• Minor changes in the instruction decode tables.

• Added details on new mechanism for CACHE access to
ScratchPad RAMs.

• Removed support for MIPS16 ASMACRO.

• Modified text and reset state for CU2 bit inStatus register,
and updated text on C2 bit inConfig1.
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 291

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Revision History
01.04 July 16, 2001

• Added MIPS16 bit in EJTAG Implementation register.

• Added missing footnote inTable 2-6 on page 31.

• Fixed typo in LSNM field description inTable 5-34 on page
136.

• Correct name of ASIDsup field in description of IBS (Table
9-7 on page 180) and DBS (Table 9-13 on page 186) registers.

• Correct name of ASIDuse field in description of IBCn (Table
9-11 on page 184) and DBCn (Table 9-17 on page 190)
registers.

• Added definitions of UNDEFINED and UNPREDICTABLE.

• Added definitions of precise and imprecise exception
(Chapter 4, “Exceptions and Interrupts in the 4KE™ Core,”
on page 54).

01.05 August 30, 2001

• Removed common instruction descriptions. Instructions with
processor specific behavior are included here, refer to
architecture documents for others.

• Noted that interrupts are not prioritized by the HW. Changed
example for long interrupt latency instruction from SYNC to
uncached load.

• Added CP0 PDtrace register inChapter 5, “CP0 Registers of
the 4KE™ Core.”

• Added EJTAG Trace sections inChapter 9, “EJTAG Debug
Support in the 4KE™ Core.”

• Added FastData description toSection 9.3, "Test Access Port
(TAP)" on page 193.

• Changed EJTAGver field from 1 -> 2 (version 2.5 to 2.6), in
Section 9.4.2.3, "Implementation Register" on page 201.

01.06 October 4, 2001

• Added SDDBP MIPS16 instruction toTable 12-16 “Special
Instructions”.

• Marked unused J(AL)R(C) encodings as reserved.

• Removed obsolete references to 2-bit ISA mode field.

• Corrected the heading format inSection 10.2.1, "Scheduling a
Load Delay Slot" on page 238.

• Changed confidentiality level to “commercial”.

01.07 December 5, 2001 • Clarified handling of all locked cache ways.

01.08 January 30, 2002

• EJTAG Version field in Debug register is set to 010

• Added description for constant fields in Debug register:
NoDCR, NoSSt, MCheckP, CacheEP, DDBSImpr,
DDBLImpr

02.00 November 8, 2002

• Major update for addition of MIPS32 Release 2 features.

• Added support for 64MB and 256MB pages in TLB (4KEc
core only).

• Wrong bit of MM field inConfig register was being used.
Describe as 2b field now.

• Address region for DSEG was wrong in figure in memory
management chapter.

Table A-1 Revision History (Continued)

Revision Date Description
292 MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

02.01 December 15, 2003

• Updated Watch register description to reflect multiple watch
registers and new status bits

• trademark updates

• replaced reference to obsolete MD00232 with MD00086

• updated crossrefs in Status register description

02.02 January 5, 2004 • Problems with 02.01 release

Table A-1 Revision History (Continued)

Revision Date Description
MIPS32 4KE™ Processor Core Family Software User’s Manual, Revision 2.02 293

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

	MIPS32 4KE™ Processor Core Family Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32™ 4KE™ Processor Core Family
	1.1� The 4KEc™, 4KEm™, and 4KEp™ Cores
	1.2� Features
	1.3� 4KE™ Core Block Diagram
	1.3.1� Required Logic Blocks
	1.3.1.1� Execution Unit
	1.3.1.2� Multiply/Divide Unit (MDU)
	1.3.1.3� System Control Coprocessor (CP0)
	1.3.1.4� Memory Management Unit (MMU)
	1.3.1.5� Cache Controllers
	1.3.1.6� Bus Interface Unit (BIU)
	1.3.1.7� Power Management

	1.3.2� Optional Logic Blocks
	1.3.2.1� MIPS16e™ Application Specific Extension
	1.3.2.2� Instruction Cache
	1.3.2.3� Data Cache
	1.3.2.4� EJTAG Controller
	1.3.2.5� Coprocessor 2 Interface (CP2)
	1.3.2.6� CorExtend™ User Defined Instructions (UDI)

	Pipeline of the 4KE™ Core
	2.1� Pipeline Stages
	2.1.1� I Stage: Instruction Fetch
	2.1.2� E Stage: Execution
	2.1.3� M Stage: Memory Fetch
	2.1.4� A Stage: Align
	2.1.5� W Stage: Writeback

	2.2� Instruction Cache Miss
	2.3� Data Cache Miss
	2.4� Multiply/Divide Operations
	2.5� MDU Pipeline (4KEc™ and 4KEm™ Cores)
	2.5.1� 32x16 Multiply (4KEc™ & 4KEm™ Cores)
	2.5.2� 32x32 Multiply (4KEc¸™ & 4KEm™ Cores)
	2.5.3� Divide (4KEc™ & 4KEm™ Cores)

	2.6� MDU Pipeline (4KEp™ Core)
	2.6.1� Multiply (4KEp™ Core)
	2.6.2� Multiply Accumulate (4KEp™ Core)
	2.6.3� Divide (4KEp™ Core)

	2.7� Branch Delay
	2.8� Data Bypassing
	2.8.1� Load Delay
	2.8.2� Move from HI/LO and CP0 Delay

	2.9� Coprocessor 2 instructions
	2.10� Interlock Handling
	2.11� Slip Conditions
	2.12� Instruction Interlocks
	2.13� Hazards
	2.13.1� Types of Hazards
	2.13.1.1� Execution Hazards
	2.13.1.2� Instruction Hazards

	2.13.2� Instruction Listing
	2.13.2.1� Instruction Encoding

	2.13.3� Eliminating Hazards

	Memory Management of the 4KE™ Core
	3.1� Introduction
	3.2� Modes of Operation
	3.2.1� Virtual Memory Segments
	3.2.1.1� Unmapped Segments
	3.2.1.2� Mapped Segments

	3.2.2� User Mode
	3.2.3� Kernel Mode
	3.2.3.1� Kernel Mode, User Space (kuseg)
	3.2.3.2� Kernel Mode, Kernel Space 0 (kseg0)
	3.2.3.3� Kernel Mode, Kernel Space 1 (kseg1)
	3.2.3.4� Kernel Mode, Kernel Space 2 (kseg2)
	3.2.3.5� Kernel Mode, Kernel Space 3 (kseg3)

	3.2.4� Debug Mode
	3.2.4.1� Conditions and Behavior for Access to drseg, EJTAG Registers
	3.2.4.2� Conditions and Behavior for Access to dmseg, EJTAG Memory

	3.3� Translation Lookaside Buffer (4KEc™ Core Only)
	3.3.1� Joint TLB
	3.3.2� Instruction TLB
	3.3.3� Data TLB

	3.4� Virtual-to-Physical Address Translation (4KEc™ Core)
	3.4.1� Hits, Misses, and Multiple Matches
	3.4.2� Memory Space
	3.4.2.1� Page Sizes
	3.4.2.2� Replacement Algorithm

	3.4.3� TLB Instructions

	3.5� Fixed Mapping MMU (4KEm™ & 4KEp™ Cores)
	3.6� System Control Coprocessor

	Exceptions and Interrupts in the 4KE™ Core
	4.1� Exception Conditions
	4.2� Exception Priority
	4.3� Interrupts
	4.3.1� Interrupt Modes
	4.3.1.1� Interrupt Compatibility Mode
	4.3.1.2� Vectored Interrupt Mode
	4.3.1.3� External Interrupt Controller Mode

	4.3.2� Generation of Exception Vector Offsets for Vectored Interrupts

	4.4� GPR Shadow Registers
	4.5� Exception Vector Locations
	4.6� General Exception Processing
	4.7� Debug Exception Processing
	4.8� Exceptions
	4.8.1� Reset Exception
	4.8.2� Soft Reset Exception
	4.8.3� Debug Single Step Exception
	4.8.4� Debug Interrupt Exception
	4.8.5� Non-Maskable Interrupt (NMI) Exception
	4.8.6� Machine Check Exception (4KEc™ core)
	4.8.7� Interrupt Exception
	4.8.8� Debug Instruction Break Exception
	4.8.9� Watch Exception — Instruction Fetch or Data Access
	4.8.10� Address Error Exception — Instruction Fetch/Data Access
	4.8.11� TLB Refill Exception — Instruction Fetch or Data Access (4KEc™ core only)
	4.8.12� TLB Invalid Exception — Instruction Fetch or Data Access (4KEc™ core only)
	4.8.13� Bus Error Exception — Instruction Fetch or Data Access
	4.8.14� Debug Software Breakpoint Exception
	4.8.15� Execution Exception — System Call
	4.8.16� Execution Exception — Breakpoint
	4.8.17� Execution Exception — Reserved Instruction
	4.8.18� Execution Exception — Coprocessor Unusable
	4.8.19� Execution Exception — Coprocessor 2 Exception
	4.8.20� Execution Exception — Implementation-Specific 1 exception
	4.8.21� Execution Exception — Implementation Specific 2 exception
	4.8.22� Execution Exception — Integer Overflow
	4.8.23� Execution Exception — Trap
	4.8.24� Debug Data Break Exception
	4.8.25� TLB Modified Exception — Data Access (4KEc™ core only)

	4.9� Exception Handling and Servicing Flowcharts

	CP0 Registers of the 4KE™ Core
	5.1� CP0 Register Summary
	5.2� CP0 Register Descriptions
	5.2.1� Index Register (CP0 Register 0, Select 0)
	5.2.2� Random Register (CP0 Register 1, Select 0)
	5.2.3� EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0)
	5.2.4� Context Register (CP0 Register 4, Select 0)
	5.2.5� PageMask Register (CP0 Register 5, Select 0)
	5.2.6� PageGrain Register (CP0 Register 5, Select 1)
	5.2.7� Wired Register (CP0 Register 6, Select 0)
	5.2.8� HWREna Register (CP0 Register 7, Select 0)
	5.2.9� BadVAddr Register (CP0 Register 8, Select 0)
	5.2.10� Count Register (CP0 Register 9, Select 0)
	5.2.11� EntryHi Register (CP0 Register 10, Select 0)
	5.2.12� Compare Register (CP0 Register 11, Select 0)
	5.2.13� Status Register (CP0 Register 12, Select 0)
	5.2.14� IntCtl Register (CP0 Register 12, Select 1)
	5.2.15� SRSCtl Register (CP0 Register 12, Select 2)
	5.2.16� SRSMap Register (CP0 Register 12, Select 3)
	5.2.17� Cause Register (CP0 Register 13, Select 0)
	5.2.18� Exception Program Counter (CP0 Register 14, Select 0)
	5.2.19� Processor Identification (CP0 Register 15, Select 0)
	5.2.20� EBase Register (CP0 Register 15, Select 1)
	5.2.21� Config Register (CP0 Register 16, Select 0)
	5.2.22� Config1 Register (CP0 Register 16, Select 1)
	5.2.23� Config2 Register (CP0 Register 16, Select 2)
	5.2.24� Config3 Register (CP0 Register 16, Select 3)
	5.2.25� Load Linked Address (CP0 Register 17, Select 0)
	5.2.26� WatchLo Register (CP0 Register 18, Select 0-7)
	5.2.27� WatchHi Register (CP0 Register 19, Select 0-7)
	5.2.28� Debug Register (CP0 Register 23, Select 0)
	5.2.29� Trace Control Register (CP0 Register 23, Select 1)
	5.2.30� Trace Control2 Register (CP0 Register 23, Select 2)
	5.2.31� User Trace Data Register (CP0 Register 23, Select 3)
	5.2.32� TraceBPC Register (CP0 Register 23, Select 4)
	5.2.33� Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	5.2.34� ErrCtl Register (CP0 Register 26, Select 0)
	5.2.35� TagLo Register (CP0 Register 28, Select 0)
	5.2.36� DataLo Register (CP0 Register 28, Select 1)
	5.2.37� ErrorEPC (CP0 Register 30, Select 0)
	5.2.38� DeSave Register (CP0 Register 31, Select 0)

	Hardware and Software Initialization of the 4KE™ Core
	6.1� Hardware-Initialized Processor State
	6.1.1� Coprocessor 0 State
	6.1.2� TLB Initialization (4KEc™ core only)
	6.1.3� Bus State Machines
	6.1.4� Static Configuration Inputs
	6.1.5� Fetch Address

	6.2� Software Initialized Processor State
	6.2.1� Register File
	6.2.2� TLB (4KEc™ Core Only)
	6.2.3� Caches
	6.2.4� Coprocessor 0 State

	Caches of the 4KE™ Core
	7.1� Cache Configurations
	7.2� Cache Protocols
	7.2.1� Cache Organization
	7.2.2� Cacheability Attributes
	7.2.3� Replacement Policy
	7.2.4� Virtual Aliasing

	7.3� Instruction Cache
	7.4� Data Cache
	7.5� CACHE Instruction
	7.6� Software Cache Testing
	7.6.1� I-Cache/D-cache Tag Arrays
	7.6.2� I-Cache Data Array
	7.6.3� I-Cache WS Array
	7.6.4� D-Cache Data Array
	7.6.5� D-cache WS Array

	7.7� Memory Coherence Issues

	Power Management of the 4KE™ Core
	8.1� Register-Controlled Power Management
	8.2� Instruction-Controlled Power Management

	EJTAG Debug Support in the 4KE™ Core
	9.1� Debug Control Register
	9.2� Hardware Breakpoints
	9.2.1� Features of Instruction Breakpoint
	9.2.2� Features of Data Breakpoint
	9.2.3� Instruction Breakpoint Registers Overview
	9.2.4� Data Breakpoint Registers Overview
	9.2.5� Conditions for Matching Breakpoints
	9.2.5.1� Conditions for Matching Instruction Breakpoints
	9.2.5.2� Conditions for Matching Data Breakpoints

	9.2.6� Debug Exceptions from Breakpoints
	9.2.6.1� Debug Exception by Instruction Breakpoint
	9.2.6.2� Debug Exception by Data Breakpoint

	9.2.7� Breakpoint used as TriggerPoint
	9.2.8� Instruction Breakpoint Registers
	9.2.8.1� Instruction Breakpoint Status (IBS) Register
	9.2.8.2� Instruction Breakpoint Address n (IBAn) Register
	9.2.8.3� Instruction Breakpoint Address Mask n (IBMn) Register
	9.2.8.4� Instruction Breakpoint ASID n (IBASIDn) Register
	9.2.8.5� Instruction Breakpoint Control n (IBCn) Register

	9.2.9� Data Breakpoint Registers
	9.2.9.1� Data Breakpoint Status (DBS) Register
	9.2.9.2� Data Breakpoint Address n (DBAn) Register
	9.2.9.3� Data Breakpoint Address Mask n (DBMn) Register
	9.2.9.4� Data Breakpoint ASID n (DBASIDn) Register
	9.2.9.5� Data Breakpoint Control n (DBCn) Register
	9.2.9.6� Data Breakpoint Value n (DBVn) Register

	9.3� Test Access Port (TAP)
	9.3.1� EJTAG Internal and External Interfaces
	9.3.2� Test Access Port Operation
	9.3.2.1� Test-Logic-Reset State
	9.3.2.2� Run-Test/Idle State
	9.3.2.3� Select_DR_Scan State
	9.3.2.4� Select_IR_Scan State
	9.3.2.5� Capture_DR State
	9.3.2.6� Shift_DR State
	9.3.2.7� Exit1_DR State
	9.3.2.8� Pause_DR State
	9.3.2.9� Exit2_DR State
	9.3.2.10� Update_DR State
	9.3.2.11� Capture_IR State
	9.3.2.12� Shift_IR State
	9.3.2.13� Exit1_IR State
	9.3.2.14� Pause_IR State
	9.3.2.15� Exit2_IR State
	9.3.2.16� Update_IR State

	9.3.3� Test Access Port (TAP) Instructions
	9.3.3.1� BYPASS Instruction
	9.3.3.2� IDCODE Instruction
	9.3.3.3� IMPCODE Instruction
	9.3.3.4� ADDRESS Instruction
	9.3.3.5� DATA Instruction
	9.3.3.6� CONTROL Instruction
	9.3.3.7� ALL Instruction
	9.3.3.8� EJTAGBOOT Instruction
	9.3.3.9� NORMALBOOT Instruction
	9.3.3.10� FASTDATA Instruction
	9.3.3.11� TCBCONTROLA Instruction
	9.3.3.12� TCBCONTROLB Instruction
	9.3.3.13� TCBDATA Instruction

	9.4� EJTAG TAP Registers
	9.4.1� Instruction Register
	9.4.2� Data Registers Overview
	9.4.2.1� Bypass Register
	9.4.2.2� Device Identification (ID) Register
	9.4.2.3� Implementation Register
	9.4.2.4� EJTAG Control Register

	9.4.3� Processor Access Address Register
	9.4.3.1� Processor Access Data Register

	9.4.4� Fastdata Register (TAP Instruction FASTDATA)

	9.5� TAP Processor Accesses
	9.6� Fetch/Load and Store from/to the EJTAG Probe through dmseg
	9.7� EJTAG Trace
	9.7.1� Processor Modes
	9.7.2� Software versus Hardware control
	9.7.3� Trace information
	9.7.4� Load/Store address and data trace information
	9.7.5� Programmable processor trace mode options
	9.7.6� Programmable trace information options
	9.7.6.1� User Data Trace

	9.7.7� Enable trace to probe/on-chip memory
	9.7.8� TCB Trigger
	9.7.9� Cycle by cycle information
	9.7.10� Trace Message Format
	9.7.11� Trace Word Format

	9.8� PDtrace™ Registers (software control)
	9.9� Trace Control Block (TCB) Registers (hardware control)
	9.9.1� TCBCONTROLA Register
	9.9.2� TCBCONTROLB Register
	9.9.3� TCBDATA Register
	9.9.4� TCBCONFIG Register (Reg 0)
	9.9.5� TCBTW Register (Reg 4)
	9.9.6� TCBRDP Register (Reg 5)
	9.9.7� TCBWRP Register (Reg 6)
	9.9.8� TCBSTP Register (Reg 7)
	9.9.9� TCBTRIGx Register (Reg 16-23)
	9.9.10� Register Reset State

	9.10� EJTAG Trace Enabling
	9.10.1� Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	9.10.2� Turning On PDtrace™ Trace
	9.10.3� Turning Off PDtrace™ Trace
	9.10.4� TCB Trace Enabling
	9.10.5� Tracing a reset exception

	9.11� TCB Trigger logic
	9.11.1� Trigger units overview
	9.11.2� Trigger Source Unit
	9.11.3� Trigger Control Units
	9.11.4� Trigger Action Unit
	9.11.5� Simultaneous triggers
	9.11.5.1� Prioritized trigger actions
	9.11.5.2� OR’ed trigger actions

	9.12� EJTAG Trace cycle-by-cycle behavior
	9.12.1� Fifo logic in PDtrace and TCB modules
	9.12.2� Handling of Fifo overflow in the PDtrace module
	9.12.3� Handling of Fifo overflow in the TCB
	9.12.3.1� Probe width and Clock-ratio settings

	9.12.4� Adding cycle accurate information to the trace

	9.13� TCB On-Chip Trace Memory
	9.13.1� On-Chip Trace Memory size
	9.13.2� Trace-From Mode
	9.13.3� Trace-To Mode

	Instruction Set Overview
	10.1� CPU Instruction Formats
	10.2� Load and Store Instructions
	10.2.1� Scheduling a Load Delay Slot
	10.2.2� Defining Access Types

	10.3� Computational Instructions
	10.3.1� Cycle Timing for Multiply and Divide Instructions

	10.4� Jump and Branch Instructions
	10.4.1� Overview of Jump Instructions
	10.4.2� Overview of Branch Instructions

	10.5� Control Instructions
	10.6� Coprocessor Instructions
	10.7� Enhancements to the MIPS Architecture
	10.7.1� CLO - Count Leading Ones
	10.7.2� CLZ - Count Leading Zeros
	10.7.3� MADD - Multiply and Add Word
	10.7.4� MADDU - Multiply and Add Unsigned Word
	10.7.5� MSUB - Multiply and Subtract Word
	10.7.6� MSUBU - Multiply and Subtract Unsigned Word
	10.7.7� MUL - Multiply Word
	10.7.8� SSNOP- Superscalar Inhibit NOP

	4KE™ Processor Core Instructions
	11.1� Understanding the Instruction Descriptions
	11.2� 4KE™ Opcode Map
	11.3� MIPS32™ Instruction Set for the 4KE™ core
	CACHE
	LL
	PREF
	SC
	SYNC
	TLBR
	TLBWI
	TLBWR
	WAIT

	MIPS16 Application-Specific Extension to the MIPS32 Instruction Set
	12.1� Instruction Bit Encoding
	12.2� Instruction Listing

	Revision History

